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Abétra&

‘This dissertation details our research on a wide range of ideas from quan-

tum computing — quantum simulation, quantum algorithms, and quantum
complexity which are brought together under the umbrella of quantum walks.

* Quantum simulation — whose long-term promises are far-reaching —
presents opportunities to solve problems that are not accessible to clas-
sical computers, such as many-body quantum sy$tems with large de-
grees of freedom. Our contribution regarding quantum simulation fo-
cuses on a qubit-efficient scheme to simulate quantum-walk-based sim-
ulations. This involves isolating the dynamics of the internal &ate of
quantum-walk by probing the effet of the position $tate as the envi-
ronment. We explicitly demonétrate the scheme for the simulation of
neutrino oscillations and establish a connetion between the dynamics
of reduced coin §tate and neutrino phenomenology, enabling one to fix
the simulation parameters for a given neutrino experiment.

* Quantum computers have the ability to outclass conventional classical
computing by running quantum algorithms. In the laét several decades,
quantum algorithms have been proposed for computation problems in
areas such as cryptography, search and optimization, simulation, and
solving large sy§tems of linear equations. Among the early known quan-
tum algorithms is Grover’s search algorithm, which searches data points
in unétrutured data sets. Our contribution regarding the search al-
gorithm focuses on the extension of the algorithm to search for multi-
ple data points, ensuring the homogeneous amplification of probability
amplitude for each, as well as the inherent category associated with the
points. Our algorithm uses additional qubits to encode the data point
category. We extended the scheme to propose a protocol for the search
of dynamic marked points. The quantum algorithm is complemented
by the explicit construétion of the quantum circuit along with its com-

plexity.

* Quantum complexity — in particular, circuit complexity — is a mathe-
matical technique to find the cost of implementing a unitary operation.
Vaguely, it meant to quantify the number of gates required to imple-
ment a unitary operation. Although, its exaét relation to circuit depth
is §till not known. Our contribution regarding circuit complexity is to
establish its relation with circuit depth. In our work, we computed the
two quantities — circuit complexity and circuit depth - for a two-qubit
syStem obtained from the purification of the reduced coin §tate of the
quantum walk. We showed that the two quantities obey the same linear

scaling.

The aforementioned ideas — which are thoroughly documented in this docu-
ment — are explored rigorously — and lead to interesting results.
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@@@ Overview 1

A quantum computer is not the next generation of supercomputers; it uses spe-
cialized technology, including computer hardware and algorithms that take advan-
tage of quantum mechanics, to solve complex computational problems that are in-
trattable on classical computers or supercomputers. Unfortunately, all the quan-
tum computers that we currently have are good for absolutely nothing. Nevertheless,
decades of research have brought the goal closer than when Paul Benioft firt pro-
posed the idea. The significant challenge in the hardware aspeét of quantum com-
puting is scaling the sy§tem to a large number of qubits. Moreover, it is essential to
make these qubits robust against errors introduced through various environmental
interactions such as thermal vibrations and ele¢tromagnetic interference.

There has also been significant progress in theoretical developments, such as
the development of efficient quantum algorithms, quantum simulations for many-
body systems, quantum chemistry, etc. In fad, in certain artificial problems, quan-
tum computers have been shown to surpass classical computers, a point known as
‘quantum advantage.” Itis crucial to leverage this quantum advantage for more prac-
tical problems. In this regard, quantum simulators hold long-term promises, partic-
ularly analogue quantum simulators, as they can readily scale to large sy§tem sizes.

This thesis focuses on the development of theoretical ideas surrounding quan-
tum algorithms, quantum simulations, and quantum complexity. The exact prob-
lems are §tated in the later part of this chapter. In this overview, I will provide a
brief description of these three concepts, followed by the exatt problems that will
be explored in the rest of the thesis. Let’s dive in.

“The last pages of a book are already con-
tained in the first pages.”

— Albert Camus

In 2019, IBM introduced the firét circuit-
based commercial 20-qubit quantum com-
puter — called IBM Quantum Sy$tem One.
Its successor, IBM Q Syétem Two, was un-
veiled in 2023 with more than a hundred

qubits.

Analogue quantum simulators are special-
purpose analogue computers.
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For instance, to describe the most general
(pure) quantum $tate for N spin-1/2 par-
ticles, we would need to §tore 2V coeffi-
cients on our computer — a task that be-
comes practically impossible for N greater
than around so. Moreover, predicting the
value of a physical quantity would involve
adding, multiplying, or otherwise combin-
ing all of those coefficients, a process that
would require time scaling exponentially
with N as well.

1 Quantum simulation

In his 1981 le€ture *Simulating physics with computers,” Feynman emphasized the
complexity of simulating quantum sy$tems using classical computers. The compu-
tational power required to describe even a single quantum sy§tem scales exponen-
tially with the number of its constituents. Therefore, simulating quantum systems
on classical computers is deemed impractical, as articulated by Feynman.

Quantum simulation[2] has become a rapidly growing field due to extraordinary
development reporting the demonstration of controlling the quantum §tates in ex-
perimental setups [3-11]. Apart from the quantum advantages that come from ex-
ploiting the laws of quantum mechanics [12, 13], it allows the §tudy of the sy§tem
from a quantum information theory perspective [14—20]. There are two ways to ap-
proach problems via quantum simulation: digital or analog quantum computers.

* A digital quantum computer — designed in analogy to modern classical com-
puters, manipulates the quantum mechanical §tate using a series of discrete
gate operations and can possibly perform error correction on imperfect opera-
tions. So far, only certain aspeéts of error correction have been demonstrated
for very small numbers of qubits and for a limited set of errors, and to make
progress, moét devices operate without any quantum error corre&tion. This
current situation is sometimes referred to as ‘noisy intermediate-scale quan-
tum (NISQ) computing’.

* On the other hand, analog quantum computers are built to simulate the dy-
namics of a particular sy§tem or quantum algorithm. These have a significant
advantage in that they can be scaled to large sy§tem sizes. There are multi-
ple experimental platforms where analog quantum simulations are realized,
including neutral atoms, superconduéting sy$tems, trapped ions, and pho-
tons [3-11].

There are several ways to approach the problem of simulating a quantum sys-
tem. I'll briefly §tate the mathematical §tatement of the quantum simulation prob-
lem (also referred to as the Hamiltonian simulation problem) and provide §tandard
techniques to approach the problem.

1.1.1  Problem §tatement

In the Hamiltonian simulation problem, given a Hamiltonian A (2" x 2" hermitian
matrix acting on # qubits), a time ¢ and maximum simulation error ¢ is the ideal evo-
lution, and that approximates U such that |/ — ¢™#|| < ¢, where ¢ is the ideal
evolution and ||-| is the spetral norm. A special case of the Hamiltonian simulation
problem is the local Hamiltonian simulation problem. This is when A is a £-local

Hamiltonian on # qubits where A = Z;”:l H; and H; acts non-trivially on at most
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qubits intead of z qubits. The local Hamiltonian simulation problem is important
because mo§t Hamiltonians that occur in nature are £-local.

L2 Techniques

Here, I will briefly discuss few techniques used for Hamiltonian simulation.

Trotter-Suzuki decompositions  Trotter-Suzuki decompositions simulate the sum-

of-terms of a Hamiltonian by simulating each on separately for a small time slice. If
H = H, + H,, then

U = ¢RI 2 iy
n—0

( oHh E—iHZSz)n
where 7 is the number of time §teps to simulate for and d¢ is the duration of time-
Step.. The larger the 7, the more accurate the simulation.

Taylor series By the Taylor series expansion:

s~ (miHY" . HP iHP
e —; po =1-iHt 5ot T (r.1)

The series can be truncated (Zi\[:o (—2H?)"/ n!), choosing sufficiently large /N. Next,

. . L . .
one decomposes the Hamiltonian H = 3" ;M) such that each A is unitary, and

SO
L

n _
H" = z a, ) Hy, - H, (1.2)
L=t
isalso alinear combination of unitaries. Therefore, the evolution of a quantum §tate
describe by application of terms H”.

Quantum walk In the quantum walk, a unitary operation whose spectrum is re-
lated to the Hamiltonian is implemented then the Qauntum phase estimation algo-
rithm is used to adjust the eigenvalues. This makes it unnecessary to decompose the
Hamiltonian into sum-of-terms like the Trotter-Suzuki methods.

1.2 Quantum algorithms

A quantum algorithm, similar to a classical algorithm, is a §tep-by-§tep procedure for
solving a problem, and each of the §teps can be performed on a quantum computer.
What makes these interesting is that they might be able to solve some problems faster
than classical algorithms (discussed below in detail) using features of quantum com-
putation — quantum superposition and quantum entanglement. These quantum
algorithms have a wide range of practical applications, from cryptography, search
and optimization, and quantum sy$§tem simulation to the resolution of extensive
sets of linear equations. I'll briefly discuss some of these.

What is quantum speedup? — when we say
thata quantum computer solves a problem
fagter than a classical computer, we typi-
cally mean in terms of computational com-
plexity. In both the classical and quantum
settings, we measure runtime by the num-
ber of elementary operations used by an al-
gorithm. In the case of quantum computa-
tion, this can be measured using the quan-
tum circuit model (See FIG. 1.1), where a
quantum circuit is a sequence of elemen-
tary quantum operations called quantum
gates, each applied to a small number of

qubits.
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FIGURE LI: Quantum circuit model is a
generalization of the classical circuit model
based on Boolean logical operations. The

horizonal lines are quantum wires, repre-

senting qubits. The implementation order
of operations (quantum gates) runs from
left-to-right followed by a measurement at

the end.

r2.1 'The hidden subgroup problem

Shor’s algorithm for integer factorization is one of the firét algorithm in the ‘Quan-
tum Algorithm Zoo’ that provide substantial quantum speedup. In number theory,
integer fattorization is the decomposition of a positive integer N into a product of
integers N = p x gq. Apart from the mathematical interest, it is of great impor-
tance since the widely used RSA public-key cryptosystem relies on the difficulty of
integer factorization. More specifically, the bet classical algorithm has a compu-

tational complexity exp (@ (logN )1/3 (log log N )2/3); while Shor’s quantum algo-

rithm solves this problem in O ((log N )3) — a superpolynomial speedup.

Shor’s algorithm for factoring is an intance of the mathematical problem known
as the hidden subgroup problem (HSP). In simpler terms, the goal of HSP is to iden-
tify a hidden pattern of §tructure (the hidden subgroup) within the function that
exhibits certain periodicity or regularity based on the underlying group G. Shor’s
algorithm solves the case G = Z, while for the other few groups, polynomial-time
quantum algorithms are proposed.

r.2.2 Search algorithm

Search problem is one of the basic problems in computer science. Mathematically,
it is formulated as — Suppose we have a funétion f : {0,1}” — {0,1}, find x such
that f(x) = 1. Classically, one needs to evaluate the funétion for each input —
N = 2" times in the wort case. Therefore, the classical computer cannot solve the
problem in fewer than O(/\) evaluations since, on average, one has to check half of
the domain to get a half chance of finding the solution. Remarkably, the quantum
search algorithm proposed by Grover can solve the problem using O(/N) evalua-
tions in the worét case. Implementation of this algorithm can be done using a num-
ber of gates linear in the number of qubits. The gate complexity of this algorithm
is O(log N) per iteration or O N log N). Grover’s search algorithm generalized to
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the idea known as Amplitude amplification, which gave rise to a family of quantum
algorithms.

13 On Geometry of Quantum Computation

As we discussed, the implementation of a unitary operation U on a quantum com-
puter involves a sequence of gates acting on a small number of qubits. The imple-
mentation is said to be hard or difficult if it requires a large number of gates. Sup-
pose that U is generated by some time-dependent Hamiltonian H(¢) according to
the Schrodinger equation dU /dt = —ZHU and with the requirement that at final
time £, U (tf) = U. Then, we can chara&erize the difficulty of the computation by
imposing a co§t F[H(¢)] on the Hamiltonian control H(¢). We can choose a coét
funétion on H (¢) that defines a Riemannian geometry on the space of unitary oper-
ations. Then, finding the optimal control function H(¢) for synthesizing a desired
unitary U then corresponds to finding minimal geodesics of the Riemannian geom-
etry.

The minimal geodesic distance between the identity operation / and U can be shown
to be equivalent to the number of gates required to synthesize U. To choose a cost
fun&ion on the control Hamiltonian H (¢), we first write H (¢) in terms of the Pauli
operator expansion

_ ®1; 7. ®117,...7,
H= Z billéo- Tt Z bl'lir--l},a— ” (1'3)
i i

assuming the following : (i) In the fir§t sum, & ranges over all possible one- and two-
body interattions. (ii) In the second sum, & ranges over all other tensor producéts of
Pauli matrices and the identity. (iii) The coefficients 4, are real. Then, we define a
measure of the cost funétion for the Hamiltonian as

F(H) = \/ B4y B (1.4)

The parameter p is a penalty paid for applying non-local interactions (larger than
two-body interaction).

This definition of control coét can be used as ditance in space SU(2") of z-qubit
unitary operators. A curve [U] between the identity operation / and the desired
operation U is a smooth function U : [0, tf] — SU(2"), such that U(0) = I and
U (tf) = U. The length of this curve can be defined by the total co$t of synthesizing
the Hamiltonian that generates evolution along the curve

4([U]) = fo " deFIH () (1s)

Since d([U]) is invariant with respect to different parameterizations of [U], we can
always rescale the Hamiltonian H (#) such that F[H(¢)] = 1 and the desired unitary

These includes - finding the minimum of
an unsorted list of IV integers, determining
graph conneétivity, and pattern matching.

More specifically, implementation is effi-
cientif the number of gates required grows
only polynomially with the size of the
problem.

These are chosen large enough in order to
suppress such terms.
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FIGURE 12: Illutration of the unitary
manifold (gray disk) featuring a geodesic
trajectory (depicted in black) from the iden-
tity to a specific target unitary U. The blue
§traight lines symbolize the construétion of
a circuit utilizing elementary gates g;, with
the final unitary expressed as U = g30,9;.
The geodesic path provides a smooth ap-
proximation to the circuit by adjusting a
control velocity V(s), analogous to an in-
finitesimal elementary gate. Here, the pa-
rameter s serves as a parameterization for
the curve.

939201 U

9291

is generated at time tp = d([U]). Working with such normalized curves, the distance
d(I,U) between I and U is defined to be the minimum of 4([U]) over all curves
[U] connecting I and U. The coét function or minimum diétance is referred to as
Nielsen’s Complexity (or simply circuit complexity).

If the diStance d(Z, U) scales polynomially with 7 for some family of unitary oper-
ators, then it is possible to find a polynomial-sized quantum circuit for that family
of unitary operators. Therefore, by recasting the problem of finding the quantum
circuits as a geometric problem, the circuit complexity opens up the possibility of
using the techniques of Riemannian geometry to sugge$t new quantum algorithms
or to prove the computational limitations of quantum computers.

1.4 The Problem

In this section, I will present three questions that reflect three seemingly unrelated
concerns that, nevertheless, are answered using a common tool.

1. Considering the recent theoretical and experimental results on quantum sim-
ulation, it appears that the practical quantum advantage might be realized in
the near future. However, there are §till some problems to be overcome. Ex-
perimentally, one demands improved controllability and scalability as most
syStems (besides optical lattices) §till have to handle a large array of qubits.
Theoretically, the investigation on control and decoherence becomes impor-
tant. The optimal requirement for the realization of physical sy§tems, a po-
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tential limitation of various schemes, and new applications of quantum sim-
ulation through existing ones should be explored.

2. In part of the quantum algorithm, our consideration is on Grover’s search
algorithm. The algorithm can be extended to the cases where one searches
for multiple marked points- in other words, the fun&ion f(x) = 1 can have
multiple solutions. However, such algorithms do not provide homogeneous
amplitude amplification to each marked point. On a different line of thought,
we can also consider further §truétured data under consideration. One such
consideration could be that the points in the dataset have additional cate-
gories. Surprisingly, the solution to these two uncorrelated problems requires
the same framework as we will discuss in later setions.

3. 'The efficient use of quantum computers requires the construction of opti-
mal quantum circuits for solving a problem. As we discussed in §1.3, circuit
complexity is a good measure of the difficulty of implementing the operation
U on a quantum computer. It can be used to put a lower bound on the num-
ber of one- and two-qubit quantum gates required to exactly synthesize U.
However, its exact relation with circuit depth is §till not clear. A better un-
der§tanding of a possible link between circuit depth and circuit complexity
could provide an analytical handle on the praétical circuit build using quan-
tum gates.

Ls My Thesis

The goal of this dissertation is to improve the $tate of affairs mentioned above. To

that end, the dissertation demonsétrates three claims : The amount of it, to be sure, is merely a

scream, but sometimes a scream is better

1. Quantum-walk-based simulations can be made qubit efficient by exploiting than a thesis.

the syStem-environment interations.

. . . . - Ralph Waldo Emerson
2. Homogeneous amplitude amplification, as well as categorical search, can be

made for marked points in the dataset by considering extended Hilbert space
dimension.

3. Circuit complexity and circuit depth obey the same scaling law.

‘We elaborate on each claim in turn —

1.5.0 Claim 1

The Hilbert space of a quantum walk consists of a position space — usually describ-
ing the §trutture of a lattice or graph on which a particle moves — and an internal
space — describing the internal §tate of the particle, such as spin. Therefore, the
quantum simulation based on quantum walk requires a large number of qubits that
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grow linearly with the lattice size, which makes experimental implementation hard.
We can bypass the requirement of lattice space by considering a sy§tem that consists
of only the internal $tate interating with an environment. The interattion between
the sy§tem and environment is made such that the overall §tate evolution of the sys-
tem is the same as that of a complete quantum walk. We will explicitly show the
form of this syStem-environment interaction and demonétrate the scheme for the
neutrino oscillation simulation.

1.5.2 Claim 2

In a quantum-walk-based search algorithm, the dataset is considered as a graph that
plays the role of position space of the walk. Therefore, the marked points are repre-
sented as marked nodes in this graph. The amplitude amplification can be thought
of as the localization of wave function at the position of the marked node. In the
case of multiple nodes, the wave function localizes at multiple positions, and local-
ization at one position, in general, affects the localization at other positions. This
causes the amplitude amplification to be inhomogeneous — in the sense that one
point may amplify to high amplitude while the other may not amplify at all. This
problem could be resolved if we consider the multi-layered graph §tructure for the
position space of the walk. In this case, the localization occurs in different layers and,
therefore, occurs independently of each other, thereby preserving the homogeneity
of amplification.

It is further possible to utilize this multi-layered §tructure to search for categor-
ical datasets. This §tems from the faét that these layers can be given labels for the
category so that the marked point is a node of a particular layer. The framework
of categorical data §tructure can also be used to consider the search for a dynamic
marked node — in which the marked node can change its position in time. In this
case, one considers the marked node to be moving from one layer to another. There-
fore, the layers play the role of time §tamp in tracking the particle or node.

15.3 Claim3

To understand the relation between circuit complexity and circuit depth, we con-
sider a two-way calculation for a two-qubit sy§tem evolving in discrete-time §teps:
1) Explicit calculation of circuit complexity. 2) Calculation of circuit depth by ex-
plicit con$truction of the quantum circuit. Our results show that the two quantities
obey similar scaling with respect to time. Although this does not provide the exaét
relation between the two quantities, it presents §trong evidence of possible relation
between the two quantities.

1.6 Organization

Chapter 2 provides the technical background on quantum-walk, particularly discrete-
time quantum walks, which will be used in later chapters. The §2.1lays down the for-
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mulation of the discrete-time quantum walk and illuétrates its conneétion with the
Dirac Hamiltonian. Later, in §2.2, the formulation is generalized to more generic
graphs. We end with providing a brief survey on the experimental implementation
of quantum-walk in §2.3.

The rest of the thesis is dedicated to three problems described in §1.4. Chapter 3
begins with describing the phenomena of neutrino oscillation (§3.1). This follows
up in §3.2 with the conétruction of sy§tem-environment interaction that probes the
position-space effects and explicitly illuétrates the case of Hamiltonian dynamics of
Dirac particle. §3.3 illustrate the simulation scheme for the neutrino oscillation for
two- and three-flavor cases, followed by the presentation of results in §3.4.

Chapter 4 begins with providing the formulation of quantum-walk search algorithm
(§4.1) with explicit case of two-dimensional lattice. It then moves on to multi-layered
conétruction in §4.2, providing the numerical results as well as scaling with lattice
size. In §4.3, we talk about the quantum tracking problem and our multi-layered
approach to solving it. The chapter is concluded in §4.4 by providing the explicit
conétruction of quantum circuit and its complexity.

Chapter s tarts with the formulation of the definition of circuit-complexity for the
geometry of z-qubit syStem evolving under operation in SU(2"). We, then, con-
sider the two-qubit sy§tem obtained from the purification of the internal §tate of
quantum-walk and set the target unitary operator (§s.2). The analytic as well as nu-
merical calculation of circuit complexity and circuit depth is done in §s.3 and §s.4,

respectively.

Finally, the dissertation concludes with chapter 6, which summarizes the contri-
butions and raises several additional research questions for future inveétigations.
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Consider a particle that moves either to the left or right depending on the result of
a coin toss. This process is an example of a random walk or drunkard’s walk — a
random process that describes a path that consiéts of a succession of random éteps
on some mathematical space. Despite its simple §truture, random walks have wide
applications from physical sciences — physics, chemistry, materials science, and bi-
ology to economics and sociology. A quantum analog of the random walk can be
formulated by allowing superposition and unitary operations (particle movement
and coin toss). Quantum walk [21-24] is a widely successful framework for mod-
eling controlled dynamics in quantum sy$tems [25-30], and for building quantum
algorithms [24, 31-33]. There are two broad categories of quantum walks - discrete-
time quantum walk (DTQW) and continuous-time quantum walk (CTQW).

* In a discrete-time quantum walk, a quantum particle or a qubit is allowed
to move in discrete §teps on a lattice governed by unitary evolution operators.
At each §tep, the particle §tate undergoes a unitary transformation, which can
be expressed as a product of two operators, namely the coin and the shift op-
erators. The coin operator ats as a rotation in the qubit space, and the shift
operator translates the particle to another vertex on the lattice [21, 34].

* In the case of continuous-time quantum walk, the quantum particle is de-
scribed by a quantum $tate that evolves over time according to a time-varying
unitary operator. As opposed to discrete-time quantum walk, the continuous-
time quantum walk evolution is continuous in time [35].

In what follows, I will discuss discrete-time quantum walk in more detail as it would
play a central role in the rest of the thesis.

1I

FIGURE 2.1: Random walk in two di-
mensions with 25 thousand $teps[1].

See ref. [21] for a comprehensive review on
a continuous-time quantum walk.
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To §tart with, I am assuming the position

space to be one-dimensional.

Later in

this chapter, I'll talk about extensions to

generic graphs.
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2.1 Discrete-time quantum walk

The discrete-time quantum walk on aline is defined on a Hilbert space # = #,® %,
where %, is coin Hilbert space and %, is the position Hilbert space. For a walk in
one dimension, %, is spanned by the basis set |1) and ||) representing the internal
degree of the walker, and %, is spanned by the basis state of the position |x) where
x € Z on which the walker evolves. At any time ¢, the §tate can be represented by

¥ (1) = 1) ® [¥'(2) + |1) ® [¥*(2)) (2.1)

%L] (

= . 2.2)
- Lﬁ

Each §tep of the discrete-time quantum walk is defined by a unitary quantum coin
operation C on the internal degrees of freedom of the walker, followed by a condi-
tional position shift operation §, which aéts on the configuration of the walker and

position space. Therefore, the §tate at time (¢ + 7) where 7 is the time required to
implement one §tep of the walk will be

Y (2 + 7)) =S(C®[Y(2)) = WY (). (23)
The general form of coin operator C, given by
C=C(,0,0,0) = ¥ ¢719% ¢719% g0

_ it (f_is(CpC? = i535,) _fl‘a(fg.fgp + Z.J'gC?))

e_is(chsp - z'sgcp) (3"5(55% + 1'595¢) (2-4)
_# ( L Ge,w)
- * ok

_Gﬁ,p,é 5@,3

where ¢ = cos, 5 = sin, £ is global phase angle, 26, 2p, 29 are the angles of rotations
along x, y and z axes respettively with &, @, 9 € [0, 27], and ¢; is the 7th component
of the Pauli spin matrices {c, % 0.}, which are generators of SU(2) group. The po-
sition shift operator S on the lattice with spacing 4 is of the form

s=ulet+ mier [ | (25)

where

T,=3 |xa)s

x€Z

are translation operators. In momentum basis, these take a diagonal form

Ti — e;ipa _ Zg;i/eq/e)(kl
k
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with |£) being momentum eigenstate, given by
1 &
—IRX
k) = —= > ¢™*x) (2.6)
V2N +1 =

where £ is eigenvalue which can take values 277/ (2N + 1), 7 € Z.

2.1.1 Illuétration

To illustrate, what does the probability distribution look like for a particle undergo-
ing a discrete-time quantum walk? Consider the initial §tate of the particle

¥(0)) = (%) @ [0)

with the coin operator defined as in EQ. (2.7). FIG. 2.2 shows the probability diétri-

bution defined as
2

P(x,t) = [yl I” + I¥a,
Itis shown that the §tandard deviation of the probability ditribution grows linearly
~ t in contrat to the classical random walk where it grows ~ vZ. This feature is
utilized in quantum algorithms such as search algorithms based on quantum walks.

2.1.2 Conne&ion with Dirac Hamiltonian

The discrete-time quantum walk can be used to simulate various physical sy§tems.
This involves setting up the unitary evolution that has an effective Hamiltonian cor-
responding to the Hamiltonian of the physical sy§tem in question. For the purpose
of this thesis, we consider the simulation of Dirac Hamiltonian. In ref. [36], it is
shown that for the coin operator

B =C(0,6,0,37/2)

— cos6I1)(1] + sin 8 (1)L = [1){1]) + cos B (L] 7)

— QW
RW

—50 0 50 100
Steps

FIGURE 2.2: Left: Probability ditribution
P(x,t) with ¢z € [0, 25] Right: Probability
ditribution P(x, £, = 100) of a particle un-
dergoing discrete-time quantum walk with
coin angle § = 7/12. Figure also shows
the probability distribution of the walker

in classical setting.

Quantum walk algorithms take advantage
of one of the two ways to outperform ran-
dom walks — 1) faster hitting time (the
time take to spread from a source vertex to
a target vertex). 2) faster mixing (the time
taken to spread out over all vertices after
Starting from one source vertex).

In ref. [30] discrete-time quantum walks
are shown to provide a versatile platform
to probe topological phases. This is further
demonstrated in various platforms such as
with cold atoms [37, 38].

13
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The experimental realization of a Dirac cel-
lular automaton in trapped-ion quantum
processor is done in ref. [39] in which space
of walker positions and internal §ate is
mapped to multi-qubit §tates.
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the effective Hamiltonian defined as W = ¢ 7 takes the form of a one spatial
dimensional Dirac Hamiltonian for small £ and & with parameter correspondence

given by
a %
; =1 & ; =m. (2.8)

The eigenvector of A corresponding to the positive eigenvalue
1 _
E= - arccos(cos d cos k) (2.9)

where % = ka and the corresponding eigenstates are given by

) = [f6h) 6B ®k) (2.10)
where

sin B¢

f(ﬁ, /e) =

2
\/sin2 0+ [cos Gsin k — (1 — cos? 0 cos* /e)l/2

) (cos fsink — (1 — cos”  cos” /e)l/Z) (2.11)

£(0.8) = 2
\/sin2 g+ [cos Gsin k — (1 — cos? 6 cos? k)l/z

This is particularly interesting from quantum simulation point of view as some of
the fundamental particles such as ele¢tron, neutrino, etc. obeys the Dirac equation.

2.2 Extension to generic graph

Let G = (V, E) be a finite d-regular graph, where V" is a set of vertices (nodes), E is
the set of edges connecting the nodes, and N = |V/] is the number of vertices. The
labels of the vertices are 0 to N — 1, and the label of the edges are 0 to d — 1. The
position space %, is spanned by {|v) : 0 < v < N — 1}, while coin space is spanned
by {|4) : 0 < 4 < d — 1} represents the internal §tates associated with each node.

For example, consider a 2D square lattice which have four direGtion of motion ateach
lattice point. One of the scheme is to consider four dimensional coin operator with
the basis $tate as |0), |1), |2), and |3) corresponding to each direttion of motion.
The shift operator can be written as

§=> 110){0] ® |x = 1,z = 1)(x, 2] + [1){1] ® |x = 1,z + 1) (x, 2]
Xy (2.12)
+2)2| ® |x + Lz = 1){x, 2] + |3)(3| ® |x + L,z + 1){x, 2]] .
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The coin operator, in general, can be the group element of SU(4). A choice could

be

101 1
11 211 1

C=311 1 a 1 (23)
1 1 1 -1

known as the Grover diffusion operator. This plays an important role in quantum-
walk based search algorithm — we will come back to this point in chapter 4.

2.3 On experimental implementation & applications

Experimental implementations of discrete-time quantum walks have been realized
on various platforms (see ref. [40] for review). To cite but few, these platforms con-
si§ts of nuclear magnetic resonances [41, 42], trapped ions [43, 44], atoms [4s], and
a number of photonic platforms [46—s1].

As we learned, the discrete-time quantum walk have connection to the Dirac equa-
tion. In past developments, variants of discrete-time quantum walk have been used
to simulate Dirac equation and its associated dynamics [36, 52—54] which are also ex-
perimentally implemented in both analog and digital quantum simulators [39, ss].
These experimental implementation allows the laboratory realization and investiga-
tion of a variety of key fundamental phenomena associated with Dirac particle dy-
namics like Zitterbewegung, simultaneous position and spin oscillations [55—58].
Schemes for quantum simulations of Dirac equation in curved space-time, discrete
gauge theories, free quantum field theory, colleétive neutrino oscillations have been
also reported in literature [s3, 59-63]. Apart from these, there are other quantum
simulation proposed based on discrete-time quantum walks in number of topics
such as topological effeéts [38, 64, 6], recurrence [66], and percolation [67].
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FIGURE 2.3: A 2D square lattice.
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A neutrino is a fermion (an elementary particle with a spin of 1/2) that interatts
only via weak interaction and gravity. Weak interations create neutrino in one of
three leptonic flavors: eletron neutrino 7, muon neutrino 7, and tau neutrino ,.
Neutrino oscillations is a quantum mechanical phenomenon in which a neutrino
created with a specific lepton flavor can later be measured to have a different lepton
flavor.

Neutrino oscillations have given rise to vibrant phenomena involving super-
novae, reactor neutrinos, the early universe, or atmospheric neutrinos, and the so-
lution to the solar neutrino problem [68-74]. A framework to simulate neutrino
oscillation with discrete-time quantum walks has been proposed in previous litera-
ture [75, 76]. It uses the fact that certain discrete-time quantum walks can be used
to simulate the Dirac equation — obeyed by neutrinos. I loosely mentioned this in
§2.1.2. Nevertheless, the readers are advised to look at the cited references.

In this chapter, I will approach the problem from the open quantum sy§tem
perspective by considering the walker’s evolution in the reduced coin space, thereby
effettively treating the position space as an environment. We consider the reduced
dynamics of the coin §tate obtained by tracing over the position space degrees of
freedom of a quantum walker. The Kraus operators we have obtained exhibit a tem-
poral recurrence relation, which allows one to calculate them sy§tematically at any
given time. These Kraus operators are shown to describe the dynamics of the Dirac
particle. We extended this formalism to describe the dynamics of more than one
Dirac particle, thereby establishing a connection between the dynamics of reduced
coin §tate and neutrino phenomenology. The Kraus operators form presented in
this work can be used as a guiding framework to model dynamics in other quan-
tum sy$tems where quantum walks, and Dirac equations are used for simulating
and modeling the dynamics.
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3. SIMULATING NEUTRINO OSCILLATION

3.1 Neutrino Oscillations

In the theory of elettroweak interaction developed by Glashow, Weinberg, and Salam,
lepton flavor is conserved, and neutrinos are massless. Therefore, a neutrino of a

given flavor created in charged current weak interactions will remain in the same

flavor §tate. However, various experimental observations have shown that the fla-
vor of neutrino changes as it propagates in space-time [77-79]. This disconnection

between the theoretical expectation and experimental observation is resolved by a

scheme that relies on mixing the three neutrino mass and flavor §tates. According

to this, each of the three neutrino flavor tates is a mixture of the three mass eigen-
§tates. As neutrinos move in space-time, each mass eigenstate acquires a different

phase. Hence, a definite flavor §tate evolves into a mixture of three flavors, leading

to flavor oscillation called neutrino oscillation [80-82].

Defining flavor eigenstates |7,) (¢ = ¢, %, 7) and mass eigenstates |») (7 = 1,2,3),
then the flavor and mass eigenstates are related by a unitary transformation written
as

) = D Uln) (3.)

where U,; is mixing matrix known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [83] given by

U Uy Us
U=\Us Usp Us
Un U, Us

1 0 0][ g5 0 s3¢”
=10 o3 53 0 1 0
10 =53 o3]l-s3 0 a3 (32)

Gy s, O][&%/? LU
x|=s, @ O] 0 %2 0o
0 0 1 0 0 1

UUUT,

where G; = cos ¢zj, .and 55 = s.m ¢ij with .¢l- i be11.1g the m1x1r.1g angle. ”ljhe phase
factor «,, a, are physically meaningful only if neutrinos are Majorana particles. The
§tate |7) is the mass eigenstate of the free Dirac Hamiltonian (in natural units)

H=£ p +pm, (33)

where m, is the mass, ; is momentum operator. The propagation of eigenstate |7,)
can be described by plane wave solutions of the form

() = e EE , 0)) (3.4)

18



3.2. Reduced dynamics of a coin

Vv |/_c:l»|2 + m? being the

Suppose that at time # = 0 a flavor neutrino |z,) is produced, then at time # the
neutrino $tate given by

%) = > U Z

13

where k; is the three dimensional momentum, with E; =
positive energy of mass-eigenstate.

¢ 13,(0)). (3:5)

Therefore, the probability of transition 3, — ; after a time ¢ is given by

Py, — 53 t) = Z Ua}Uﬁje_iEft . (3.6)
J

To illutrate EQ. (3.6), let us consider the simpler case with only two neutrino
§tate. In this case, the mixing matrix U can be written as

U - [cos¢ sin¢]

—sing cos¢ (3-7)

.
where ¢ is the mixing angle. In ultra-relativitic limit, |£;| > m; so that we can

i
apprOXImate energy as

2 2
E =l 2= ]+ 2 < E 1 2 68)

20k

where E ~ |7e,| for all 7. The transition probability from flavor states |2,) to |7) in
ultra-relativistic limit then, given by

A 2
P(s, — 731) = sin®(29) sin? ( Z‘EL) (3.9)
with Am? = mg - m% and L = ¢ is the distance traveled by the neutrinos from the
production to the detection point.

3.2 Reduced dynamics of a coin

In this setion, we will consider the reduced dynamics of a coin in a DTQW, which
previously has been §tudied in the context of non-markovian charaéteristics of the
dynamics [86]. Although, in contrast to previous work, we will derive a temporal
recurrence relation for Kraus operator which allows one to find these at any time for
a generic initial quantum §tate.

Consider the initial §tate of the walker to be

Y(0) = x) ® [#): (3.10)

=
=

Transision probability

00 7 N/
0 500 1000 1500 2000
L/E (KM/GeV)

FIGURE 3.2: Two flavor neutrino oscil-
lation. The blue curve shows the proba-
bility of the original neutrino retaining its
identity. The green curve shows the prob-
ability of conversion to the other neutrino.
The maximum probability of conversion is
equal to sin® ¢. The frequency of the oscil-
lation is controlled by Am?.

In atmospheric neutrino oscillations,
the eleétron plays almost no role; hence
EQ. (3.9) is appropriate for flavor tran-
sition [84].
the solar case of 3, <> 2, where »y is

It is also appropriate for

the superposition of », and ». These
approximations are possible since the
mixing angle &, is very small and because
two of the three mass eigenstates are very
close in mass compared to the third [8s].
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To verify that K;(t) obeys the complete-

> K OK.(0)
= > Wl ) 27 |,

= ()W %)
=7

as required.

20

consisting of an internal spin §tate

|Z>E%:{47|T)+dl|l)z%/lec} (3.)
and a position §tate

|%)E7{},:{Zcx|x):Z|cx|2<oo}. (3.12)

x€Z x€Z

After ¢ §teps, this becomes

[¥(2)) = WIY(0)) =W () ® |44) - (3.13)

The density matrix representation of the above §tate is given by
P(8) =Y (@) (Y(2)] (3.14)
= W'Y (0)) (¥ (0)| ()" (3.15)

Now, we can trace over the position space to get

) = D> (x| Y () (X (0)| (W) |x)

=1

=

x| 1) |20 1 e | (771 | )

Z
3k

(20K (2) (3.16)

where 3

K. (2) = (x| |¢) (3.17)
are called Kraus operators that describes the density operator evolution in open
quantum sy§tems. In general, these operators {K, : 1 < n < N} obeys the com-

pleteness property
> KK, =1. (3.18)

n

3.2.1  Temporal recurrence relation

For simplicity, let’s take the initial §tate to be |;,) = |0) so that

K. (2) = (x|W"]0). (3.19)
To make further progress, we break down the evolution operator /¥ in shift and
coin operator as

=S(C®I)
=[N0+ o] [Cel]

=N ICT +| DUIC®T,
=G ®T+C ®T,



3.2. Reduced dynamics of a coin

where

i« (E G
Qlechﬁ(%B ?ﬂ

(3.20)
w2 0 0
C =10 |C=ef(_G* > )

@0 0,,0

With this, consider Kraus operator at # + 1

K. (¢ +1) = (x|W"*0) = (x| W7 |0)
=Zx|W|x NEAlZd)

= Z<x|W|x’)Kx,(r). (3.21)

Now consider the fir§t term in the expression

(1) = CyaIT.|¥) + C (o171
=C (x|x' —a)+ Cl(x|x' +1)
= Ciopv_y + €0

X% 1%,x"+a

putting this into EQ. (3.21), we get

K+ 1) = 3 [Gowes + G| Ko ()

x'

= G, (1) + C K, (0).

1 w+a

Therefore, we get a recurrence relation for the Kraus operator given by

K(t+1) = CK

xX+a

(1) + CK,_,(2). (3.22)

The initial Kraus operator at # = 0 given by, using the definition given in EQ. (3.19)
K.(0) = (x|0) =

If we §tart with initial position §tate to be |x") then Kraus operators K, (¢) are re-

lated to K (¢) by
Ko (1) = (x[']x) = K (2) (3.23)

and therefore for a generic extended initial position §tate [¢;,) = >, ¢, |x"), we have

R() =D cKoo(t) = > ek, (o). (3.24)

x' x'

Hence, for general position $tate |;), the Kraus operators are simply a linear com-
bination of Kraus operators for initial §tate |0).
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3.2.2  Example : Dirac Hamiltonian

To illustrate EQ. (3.22), we derive the expression for the Kraus operator correspond-
ing to coin operator in EQ. (2.7) which describes the Dirac Hamiltonian for initial
position state |0). The operators C; | for the coin operator EQ. (2.7) have the form

cosd sinf
s=1nais=(0 )

0B = (0 )

—sind cosd

(3-25)
B

For a one-§tep walk, £ = 1

[(x(l) = BTI(xwz (0) + Ble—ﬂ(O)
= BTSxﬂz,O + Blé\x—a,O'

Hence, for a one-§tep walk, we have two Kraus operators given by

cosd sind
K_a(l):BT:( 0 0 )

1<4(1):Bl=( o 0 )

—sind cosd

(3-27)

For a two-§tep walk i.e. £ = 2

Kx(z) = BTK +a(1) + Ble—a(l)

X

= B, (B,K,,,(0) + B,K,(0)) + B, (B,K,(0) + BK, ,,(0))

1% +2a

= By (Bidyuna0 + Bi3eo) + By (Bido + B3, 200)

X X,

= B,B,0, 2,0 + (B;B| + B B)o, o + BB |d, 5,0

Therefore, for a two-§tep walk, we have three Kraus operators, given by

2 .
K,,(2) = BB, = (COSO(Q) sm(ﬁ)ocos(e))

Ky(2) = B,B, + BB, = ( —sin®(4) sin(4) cos(ﬁ)) (3.29)

—sin(8) cos(8) sin*(6)
0 0
K,(2) = BB, = (— sin(6) cos(8) cosz(a))'

In the similar manner, we can find the Kraus operator for a #-§teps walk using the
recurrence relation EQ. (3.22). These set of operators describes the spin dynamics
of Dirac particle. This is important as the evolution of neutrino mass eigenstates is
describe using Dirac equation with correspondence as in EQ. (2.8).



3.3. Simulating neutrino oscillations

3.3 Simulating neutrino oscillations

In this section, we will consider the simulation of neutrino oscillation. We begin
with considering the quantum circuit con$truction associated with mixing matrix
EQ. (3.2) and then move on to simulation two-flavor neutrino oscillations and later
generalize to the three flavor cases.

3.3.1  Quantum circuit conétrution of PMNS Matrix

Firstly, we map the neutrino flavor &ates |»,) into a three-qubit sy§tem [87] so that
the correspondence between the two systems looks like :

) —[100)  [5,) —[010) [») — [001). (3.30)

With this, we can also write the mass-eigen§tates using the mixing matrix as
%) = U3 1100) + U7;]010) + L 00, G3)
Consider now the representation of the mixing matrix on this basis. In the three-

qubit sy§tem, the mixing matrix would be a 8 x 8 matrix. To see the explicit form of
these, consider the term U in mixing matrix EQ. (3.2)

| 1100) |010) |001)
[100) | g, 12 0
|010) | —s;, a2 0 G:32)
[001) | O 0 1

G S O
U=|-52 a2 0f=
0 0 1

which has a three-qubit representation

10 0 0 0 0 0 O
01 00 0 00 0
00 g 0 =5, 0 0 0
00 0 1 0 00 0
Y=o 0 s, 0 ¢ 0 0 0| (3:33)
00 0 0 0 100
00 0 0 0 01 0
0 0o 0 0 0 0 0 1]

so that there’s a mixing between the terms [100) and [010) while the other remains
the same. In the similar manner, we can write a three-qubit representation for other
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terms U (7 = 0,1, 2, 3) as follows :

S OO O OO O

[eNoBeoNeoNoNoN o

S OO O O o~ O
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cococooy

i
5%

S O O O
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[N eBeNeNe]
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[N eBoBol ==l
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o O O

NN ool N

SO =R OO O OO

cComo oo oo SO H O OO OO

O H OO OO OO

SO RO O OO OO

O H O O OO O O

— O O O O OO

—_— o O O O O O

— O O O O O O

(334)

(3.35)

(3-36)

The unitary operations U, can be thought of as controlled unitary operators. To

illustrate this, consider on our earlier example of Uj, which is a controlled operation
on the third qubit (counting from left in |77k)). To see this, we can rewrite the

unitary Uj as :

000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
01 0o 1 0 0 0 0 0 0
00| 0 0 ¢ 0 -5, 0 0 0
omlfo o 0o 1 0 0 0 0
100/ 0 0 5 0 ¢ 0 0 0
wrfo o 0o 0 0 1 0 0
mlo o o o0 0 0 1 0
m{o o o 0 0 0 0 1
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Or more explicitly, if we define a unitary matrix

1 0 0 0
{0 a —sp O
%=, 6 @ 0 (3-37)
0 0 0 1
Then controlled operation look like :
|lj1) — |i71)
(3-38)

|£70) — 7/} ® |0)

The similar conétruétion can be done for Uy, U, Uj.

3.3.2 Passage to more than one particle

In §3.2.2, welearned on how a set of Kraus operators corresponding to coin operator
EQ. (2.7) can be used to describe to Dirac particle. We can extend this coin operator
to reproduce a set of Dirac equations, hence describing the dynamics of more than
one Dirac particle. To this end, consider a discrete-time quantum walk with 27-
dimensional coin Hilbert space #, spanned by basis = {/>1) 1f> 1)} and coin

operator

B, = f@ B(6;) (3:39)
f=1n
where
Bf:COS€f|f1T>(f’T|+Sin€f(|f’T>(f’l«|_|f’i>(f’T|) ( )
3.40
+cos G| £ INf5 L |-
In this basis, the evolution operator takes the block diagonal form given by
W=58B,®I) = @W}z @Sf(Bft@I) (3.41)
f=1n f=1n
with
Se=T. LA+ [, DAL (3.42)

Analogous to coin operator EQ. (2.7), coin operator in EQ. (3.39) reproduces a set
of 7 Dirac equations with parameter correspondence
g
a = l = =
- =1 & = =mp f=1L.,n (3.43)
with / being the particle number with internal degree of freedom {| £, 1), | /> |)}

and mass mg. The Kraus operator formalism that we developed in ?? can easily be
extended for coin operator in EQ. (3.39) as follows

0 = @ (i) = D K80, G44)

f=1,n
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where extended Kraus operator Ii'x(é}, t) follow from EQ. (3.24)

[ex(ef’ t) = Z Cx’Kv—x’ (5f5 Z‘) (345)
with K,_, (6, 2) = (x| VVfl|x'). With the formalism for simulating dynamics of 7
Dirac particle at hand, in the next section, we will see how to simulate neutrino
oscillations.

3.3.3 Two-flavor neutrino oscillations

In case of two-flavor neutrino oscillations, we need to mimic the dynamics of two
Dirac particles and therefore the coin hilbert space is four dimensional space spanned
by @ 12 |/> 1), |f> 1)}, Theevolution operator /7 has a block diagonal form given
by

w = @ SB,®1) = EB Sf(Bf®]) (3.46)

Fo12

where the quantum coin operator and shift operator are asin EQ. (3.40) and EQ. (3.42).
‘The mass eigenstates given by

) = [f(@.k) ¢(@.k) © 0]T®|/€>E|Vl>c®|k> (.47)
) =[0 0 f6k) ¢(6,h)] ® k) = ). ® &)

The initial §tate |¥(0)) of the neutrino corresponding to « flavor using the mixing
matrix acting on each sector

YO) =) = 3 Uil (3.48)
The associated reduced coin density matrix given by
£.0) = Z iU |7, (3-49)
The Kraus operator for two particle given by
(1) = D x|W;lv.) = D K.(6,0)

f=12 f=12

where $tate | ¢, ) is momentum eigenstate k in position space representation EQ. (2.6).
Atany time 7, the reduced density matrix is written as

1) = FD () p(0)(FH) (1) (3.50)

The probability of the %, — 1, transition after a time ¢ is then given by expettation
value of the proje&tion operator |1/ﬁ)£(vﬁ |, ie.

Py, = yt) =Tt [|Vﬂ)c(”ﬂ|cﬁc(t)] (3-51)
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where

|Vﬁ)c = ) (Jﬂz"/z)c (352‘)

so that

1) (7. = U Ui 1) (.- (3-53)
BIc\B Bi™ By {
ij=12

3.3.4 Three-flavor neutrino oscillations

We can trivially extend the two-flavor neutrino oscillations to three-flavor neutrino
oscillation by considering the coin operator, EQ. (3.39) with #z = 3. The mass eigen-
§tates associated with three-particles are given by

) = [f k) ¢@uk) 0 0 0 0] ®k) =|n).®k)
) =[0 0 F(Gk) g(Bk) 0 0] @ k) =|n),® k)  (54)
) =[0 0 0 0 FBk g6k ® k) =] ok

The initial §tate | ¥'(0)) of the neutrino corresponding to « flavor using the mixing
matrix acting on each seftor

[Y0) = 12) = > Uln). (3:55)
=123
The associated reduced coin density matrix given by
= > Uyl (3.56)

£,7=1,2,3

The Kraus operator for three particle given by

F(2) = EB fo @ K 9f;

where $tate | ;) is momentum eigenstate k in position space representation EQ. (2.6).
Atany time 7, the reduced density matrix is written as

Z% Y (0) 2 (0) () (2). (3.57)

The probability of the », — , transition after a time ¢ is then given by expectation
value of the projection operator [y), (1], i.e.

Py, = wt) = Te [ 19). (] .(2)] (3.58)
where
)= > Uylw), (3:59)
7=1,2,3
so that
%) (%], = Z U Uy 19 (3.60)
ST
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FIGURE 3.3: Transition probabilities of
two flavor neutrino oscillation obtained
from numerical simulation using the
Kraus operator associated with the
DTQW with initial §ate |»,). The coin
angles are 4 = 0.001 rad., 4, = 0.0986
rad., and the mixing angle ¢ = 0.698 rad.
with £ = 0.05.

2.8

Transition Probability

0 50 100 150 200
Number of steps

3.4 Results

In §3.3.2, we have seen that evolution operator in EQ. (3.46) describes the set of Dirac
equations that describes neutrino flavor oscillations and, we can make use this to es-
tablish a map with neutrino phenomenology, therefore allowing one to fix the QW
parameters for a given neutrino experiment. More explicitly, using the correspon-
dence made between quantum walk and Dirac equation in EQ. (2.8), we can write
the oscillation frequency in EQ. (3.9) in terms of quantum parameters as

AmiL A6 ¢

_Y .6
4F 4% T (-61)

where A&f- = @2 - 6% and Amf} = ml2 — m?%. FIG. 3.3 and 3.4 shows the transition
probability as a function of the number of §teps of DTQW for two-flavor and three-
flavor neutrino oscillations, respectively obtained from evolution describe by the
Kraus operators. We can observe the oscillatory behavior of flavors. One can observe
that the plot reproduces the one corresponding to actual calculations of neutrino

oscillations (see for example [88]) with taken mass values

Am3, =750 x107° eV*
Am?, = 2.457 x 107 eV7. (3.62)
Am?, = 2382 x107° eV*
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3.4.1 Linear Entropy

Among various measures of degree of entanglement [89], the linear entropy is shown
to be useful in §tudying entanglement in neutrino oscillations [90]. The linear en-
tropy associated with a bipartite sy§tem is defined as
5 - d
7d-1

where p; represent the reduced density matrix of sy§tem ;j and 4 is dimension of
density matrix P

In case of two flavor neutrino oscillations, we can write the §tate shown in EQ. (3.5)
as the Bell-like superposition

(1 - Tr(/ojz)) , j=12 (3.63)

() = G, (¢) 1),,10),, + UMIO)@ 1), (3.64)
where A
U, Ue 5. (3.65)

L]zxﬁ (t ) = Z aj - i
J

The linear entropies can found by §traightforward calculation using associated den-

sity matrix of &ate |,(¢)), and are given by

S, =5, = 4|0, 10,0 (3.66)

Therefore, the linear entropies can be written in term of transition probabilities
which continues to be true for three flavor case [90]. FIG. 3.5 shows the linear en-
tropy S, obtained from transition probabilities given by EQ. (3.51) using EQ. (3.66).
We find that degree of entanglement is largest when both transition probabilities
are equals to 0.5 which corresponds to maximally entangled Bell pair §tate and min-
imum when one of the transition probability is zero which corresponds to unentan-
gled §tate. For three-flavor case, we can write three-flavor §tate as

1

ve(0) = ve(t)

50 200 250 350 400

FIGURE 3.4: Transition probabilities of
three flavor neutrino oscillation obtained
from numerical simulation using the
Kraus operator associated with the
DTQW Left for long time $eps and
Right short time $§teps with initial §tate
|,).. The coin angles are § = 0.001 rad.,
g, = 0.01963 rad. & = 0.12797 rad,,
and the mixing angle ¢;; = 0.16087 rad.,
¢s = 0.69835, ¢, = 0.59437,and 3 = 0
with £ = 0.1.
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FIGURE 3.5: Linear entropy S (full line) as
a funétion of number of &eps (shown for
single cycle) along with transition probabil-
ities (dashed lines) P(y, — 7,) (red) and

P

v,

— ) (blue).

30
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(1)) = U, [1),,10),,10),, + T,10),,11),,10), +T,.[0),10), [1),.  (3.67)

% v %
In case of multipartite sy§tem, we can define partial linear entropies corresponding

(a:837)
SZ

to various bipartition of total system [90]. We adopt the notation for linear

. . (@) _ ...
entropy of reduced density matrix £ =T, () where { corresponds to initial
flavor §tate. Similar to two flavor case, the partial linear entropies can be written in
terms of transition probabilities and given by

S = 410, (1- 10.()17). (3.68)

The remaining two partial entropies can be found by simply permutinge, , 7. Fig. 3.6
shows the partial linear entropies for initial &tate |#,(0)). The maximum of these par-
tial shows the point at which maximum entanglement exit between those two fla-
vors. To understand the behavior of overall degree of entanglement, we can define
average linear entropy as mean value of partial entropies, given by

8, - - - - - -
(S = 3 (1010 P + 1010 410, PIO ) - (6:69)

FIG. 3.6 shows behavior of average linear entropy (S,), we observe similar behavior
as in case of two-flavor neutrino oscillations. This shows §trong correlation between
the components A and .

3.5 Outlook

In this work, we proposed a novel scheme to simulate neutrino oscillations using
DTQW formalism. We considered the evolution of reduced dynamics of coin den-
sity matrix using set of Kraus operators obtained from tracing out the position space.
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This in turn means effectively treating dynamics in position space as environmental
effect. We obtained the transition probabilities of neutrino flavor §tates in the same
framework. To §tudy the degree of entanglement between different flavors, we con-
sidered linear entropy which found to be maximum for bell-pair §tate.

We conclude with a few intere§ting future direttions for this work. Firstly, given
the recent development in simulating open sy§tem dynamics in quantum devices
[91, 92], the demonétration of a quantum algorithm of open sy§tem approach to
neutrino oscillation on a near-term quantum device would give laboratory verifica-
tion of the phenomenon. Furthermore, in previous studies, possible decoherence
effetts induced by new physics (e.g., quantum gravity, §tring theory) in neutrino os-
cillations have been §tudied by considering the open sy§tem framework [93], and
bounds on dissipative parameters are obtained for various neutrino experiments
[94, 95]. Our scheme is open to incorporating these dissipation effects, which may
provide an exciting diretion for investigating non-standard effects.

1000 1500 2000 2500 3000

Number of steps

FIGURE 3.6: Left Partial linear entropies
S;a’ﬁ;y) as a funétion of number of §teps
(shown for a single cycle) with black cor-
responds to 57 blue corresponds to
Se(T’e;"), and red corresponds to Se(e’W).
Right: Average linear entropy (S,) as a
function of number of §teps (shown for a

single cycle).
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“Even after studying quantum algorithms
for quite some time, they continue to sur-
prise me.”

— Shelby Kimmel

Quantum computers are engineered with the purpose of surpassing the computa-
tional capabilities of conventional computers through the execution of quantum
algorithms [96-98]. These quantum algorithms have a wide range of practical ap-
plications from cryptography, search and optimization, and quantum sy§tem sim-
ulation to the resolution of extensive sets of linear equations [99-110]. Notably,
Grover’s search algorithm §tands out as a widely recognized quantum algorithm ca-
pable of searching unsorted databases with a quadratic speed advantage over its clas-
sical counterparts [111]. Grover’s algorithm, combined with quantum walk, has mo-
tivated the foundation and development of the commonly known research venture
of Quantum walk search algorithms for searching and sorting unstrutured spatial
data [100, 112—-114]. Quantum search algorithms have an asymptotic quadratic accel-
eration in terms of oracle calls, unlike their classical cousins [112, 115].

Quantum-walk search with multiple points has been extensively §tudied in previ-
ous literature [116-121]. While the algorithm can locate multiple nodes within a
graph, however not all the marked points are equally amplified. Further, the algo-
rithm completely ignores a chronological ordering or category of the marked nodes,
if any. In this chapter, we specifically address these issues regarding the QWSA.
To resolve these issues, we consider the multilayered graph §tructure (See FIG. 4.1)
which amounts to extension of Hilbert space. Each marked point, then, is associ-
ated with a different layer of the graph. As we will see, this multilayer §tructure
of the graph avoids the possible interference between different search operations of
marked points. We can further use this multilayer §truture to consider the search
on categorical datasets. In this case, we regard each layer as a different category to
which a marked point might be associated with. The search algorithm, therefore,
looks for the marked point along with its category — multilayer search algorithm.
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FIGURE 4.1: Consider a graph (on the left)
— a two-dimensional lattice — consists of
three marked nodes (in red). Our algo-
rithm copies the graph into multiple copies
where each copy consists of a single marked
point. The multiple copies can be utilize
as additional label for the marked nodes
as well. We call the labeling $tatic labeling
if the probability amplitude can not flow
between the layers and dynamical labeling
if the probability amplitude can flow be-

tween the layers (shown in blue).
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The distinction between §tatic and dynamic labeling relies on whether there is
a flow of probability between various sheets. Our refined algorithm can address
a variety of applications, including real-time obje¢t tracking, trajectory prediction,
financial market analysis, dynamic optimization problems, and network manage-
ment and routing that includes dynamical components. The labeling concept is not
new and has been applied to element di§tinétness problems in quantum algorithms.
However, to our knowledge, we are not aware of the application of the labeling
concept in the context of quantum search algorithms. As a concrete illustration of
the scope of applicability of our algorithm, we consider a particle moving in a two-
dimensional lattice with time and show that the algorithm is capable of detecting
the coordinates of the particle as it moves with time. Further, to properly connect
with the idea of integrating our QWSA with §tate-of-the-art quantum hardware, we
conétrutt an equivalent quantum circuit that can implement the algorithm.

4.1  Quantum walk search algorithm

Let G = (V, E) be a finite d-regular graph, where V" is a set of vertices (nodes), E is
the set of edges conneéting the nodes, and N = |V] is the number of vertices. The
labels of the vertices are 0 to /N — 1, and the labels of the edges are 0 to d — 1. A
discrete-time quantum walk on the graph G generates a unitary evolution operator
in the Hilbert space %, = # ., ® #;,: the position space #,,, and the coin
space # o, ¥ o, is spanned by {|v): 0 < v < N -1}, while %, is spanned
by {|a) : 0 < 4 < d — 1} represents the internal &ates (often called “coin §tates”)
associated with each node. At any time ¢, the §tate can be represented by

[¥(2) = > ¢,0(0)|a,0). (41)

Each §tep of the DTQW is generated by a unitary operator consisting of coin oper-
ation C on the internal degrees of freedom followed by a conditional position shift
operation S on the configuration space. Therefore, the §tate at time ¢ and (¢ + 7)
(where 7 is the time required to implement one §tep of the walk) satisfies the rela-
tion,

[¥(z+7) = UlY(2) = S(CN[¥(2)), (4.2)
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whereby imposing the operator form of the evolution operator U = S(C®J). With
this information, we are set to address the QWSA. Consider that the walker §tarts
from an initial §tate, which is a uniform superposition of all §tates over internal and
external degrees of freedom,

Y
—

|ww»=|%w>®§;§]w,wmm|¢”>=%§ﬂ|@. (+3)

Il
(=]

where |;kc(d)) is uniform superposition §tate in coin space. The ideabehind the QWSA
is Starting with EQ. (4.3), can we define a unitary operator that localizes the §tate to
a certain point (say |v,)) on the grid. This operation is mathematically represented

as
2

() = (U') 1Y(0))s Be) = 101 ¥() s oms, - (4-4)

The mathematical equation above §tates simply that after # such operations of a uni-
tary operator U’, the wave function localizes at the point |v,) where the time 7 is
related to the size of the grid and the marked node configuration. The probability
of success is the maximal probability for locating the node |v,) and is related to the
number of times #, the U’ operator has been applied on the initial §tate. For a sin-
gle marked node, the operator U’ is related to the unitary operator for the DTQW
U =S§"-(C®I) Dby the relation,

where R is called ”Search Oracle” and contains the information about the marked
node(s). In essence, it is a phase shift operator that reverses the phase of all but one
node ( ze. the marked node) by ¢'*. For a single marked node, the Search Oracle has
a simple functional form [114, 121]

R =129 ® og){vy| - (4.6)

Without the coin $tate, this form coincides with the Grover Search Oracle [122]

Up =1 =2vp)(w,] . (47)

The search oracle R can be easily generalized for multiple marked nodes,

R=I-21¢Yy“ @ > lo)] (4.8)

veM

where M is set of marked multiple marked node. Toilluétrate the concrete §tructure
of the algorithm, we will consider a finite two-dimensional lattice with open and
periodic boundary conditions.
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To unclutter the notation, we define set of

points ¢, = {0,1,..VN — 2} and ¢, =

{1,2,..,VN -1}
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4.1.1  Finite two-dimensional lattice

Consider the quantum-walk search algorithm in the VNN square lattice. We will
consider both open and periodic boundary conditions. The quantum §tate spanned
by {|7,/) ® |x,9) : 4,7 € [0,1]] & 0 < x,y < VN - 1} where |7, j) represents coin
§tate, and |x, y) represents position &ate. The shift operator S is the flip-flop shift
operator given by

S|l'3j> ® |x,y) = |1 -1 1 _]> ® |X + (_1)1‘;1]’}’ + (_l)j(l - 31])) . (4~9)
The flip-flop shift operator invert the coin §tate as it shift the position $tate. This

inversion in the con §tate is important for speeding up search algorithms on the two-
dimensional lattice [114, 121]. In explicit notation, we can write coin §tate as

1) = 100) =
(4.10)

) = lo1) -

SO HO oo o

In this notation, the flip-flop ship operator for the periodic boundary condition
given by

ST =10le Y ley+ Dyl + U @Y lxy -~ 1))l
X,y x5

(4.11)
+le) =@ > v+ L)y + =)@ D v =1,9)(xy] !
EN] %y

where superscript in SL.(Z) is to emphasize that there are two directions of motion. In
periodic boundary condition, the position $tate obey the cyclic property |x+ JN) =
|x) and |y + VN) = |y). Therefore, the geometry of two-dimensional lattice with
periodic boundary condition is equivalent to torus. For open boundary condition,
the shift operator is defined as the sum of interior term (see FIG. 4.2).

ST =101 Y oy + Dyl +INUe > lxy -1l

%,Y€4 *)€¢y
(4.12)
+led =@ D r+ L)yl + =)@ > x—1,y)x
XEy,y XE€Py,)
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and boundary (exterior)

SZ=1mle > lw eyl + 1@ > x|

x,y=m—1 x,y=0
(4.13)
do)ole S el el S lnan)l
x=m—1,y x=0,y
as S((,z) = Sl(j[) + Sﬁ,ft’ The explicity form ofSi(jt) and ng is chosen so that the shift

operator S((,Z) is unitary i.e. S((,Z) (Sf)z))T = (Sf,z))TSf,z) = [ (see appendix 6). The
coin operator in the quantum-walk search is chosen to be the Grover diffusion op-
erator [123, 124]

-1 1 1

M2 Ifr -1 1 1

GO =2y -1=5 7 L (4:14)
1

The §tate is initialized as an equal superposition in coin and position space, given by

FO) =3 S 1Ne 5> e =lhe D ) (as)
i, X,y X,y

The modified unitary operator in Eq. EQ. (4.5) is applied optimal time £, times to
initial §tate

¥ (2p)) = (U) " [¥(0)) (4.16)

FIGURE 4.2: The §tructure of the shift op-
erator in the case of open boundary condi-
tions is different in the interior and exterior
of the grid. The figure shows the self-loop
at the boundary point of the lattice which
ensures the unitarity of the shift operator.
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FIGURE 4.3: Schematic diagram of
the §trutture of Hilbert space for
quantum-walk search for ordered
marked nodes.
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which amplifies the probability amplitude of target §tates. For the two-dimensional
lattice, the complexity of the algorithm is given by O(In V). The running time is

top = O(WN1n N) and the success probability is p .. = O(1/ In N) [114].

4.2 QWSA for ordered marked nodes

In previous literature [116-121], quantum-walk search with multiple marked points
has been extensively §tudied. In a general QWSA, multiple marked points can in-
deed exist on the graph, and there is no inherent (chronological) ordering associated
with these marked points. The algorithm’s objective is to efficiently locate any one
of these marked points without any preference for their order. In this setion, we
consider that there is an additional (and preferably a chronological) ordering associ-
ated with marked points, and devise a refined algorithm that addresses this ordering.
More generally, our refined algorithm will address the case where we have multiple
marked points belonging to different categories and we will be searching for the
point along with its category.

For §tarters, consider a total of m different categories 7, where z = 0, 1, ..., m—1. Fur-
ther, we assume that a particular category 7, has a unique marked point. To repre-
sent this sy§tem, we introduce additional label §tates |7,) with 0 < z < m—1, adding
an extra dimension to the Hilbert space. We consider a finite two-dimensional lat-
tice, although our method can be easily generalized to arbitrary graphs and dimen-
sions. FIG. 4.3 shows the schematic diagram of Hilbert space for the search algo-
rithm, which shows replicated layers of the 24 lattice representing different cate-
gories 7,. Depending on whether the motion between different layers (categories) is
allowed or not, we have two different scenarios: Static labeling and Dynamic label-
ing.

4.2.1  Static Labelling

Consider the case where the walker is not allowed to move between the layers. The
Hilbert space is spanned by basis {|7, /) ® |x,y) ® |7,) : 7,7 € [0,1] & 0 < x,y <
N —1& 0 < z < m — 1}. The oracle can be written as

R=T-21y"YyP1e> > |uyirnyl @ 7).l (417)

z XeM,

where M, is set of marked nodes in layer z, and & = (x, y) to unclutter the notations.
Since the walker doesn’t move between the layers, the shift and coin operator are the
same as the unordered marked case as described in ??. Note that the Hilbert space for
this case is reducible to a dire¢t sum of Hilbert spaces associated with different layers.
Therefore, the algorithm boils down to a set of independent reduced QWSA on each
layer. Following the reducibility of the Hilbert space, we can write the evolution
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The initial §tate is an equal superposition in coin, position, and label space, given by

|¥(0))

2ZIZJ

ERTRS

NJ_Z |%,7) ® [7.)

(4.20)

The modified operator U "is applied £, times to the §tate, which amplifies the marked
points and their associated labels. To illustrate the algorithm, we perform a numeri-
cal simulation of the algorithm on 16 x16 grid under both open and periodic bound-
ary conditions. The simulation includes four marked nodesat position {(6, 8), (8, 9), (12, 5), (15,5)},
which necessitates four layers or label §tates.

FIG. 4.4 shows the probability of finding a labeled marked node as a funétion
of the number of §teps taken by the algorithm. Figure 4.5 displays the probability
distribution at the optimal time §tep. For the periodic boundary condition, we ob-
serve that the probabilities of finding each marked node coincide. This results from
the translational symmetry inherent in the toroidal geometry of the lattice. In con-
tradt, under the open boundary condition, the probability of finding a marked node
generally depends on its location due to boundary effects. Increasing the sy$tem size
would lead us to anticipate the disappearance of boundary effetts. Consequently,
we expett the two probability distributions to converge as the number of nodes N
approaches infinity.

(X, Target Points & Layer
- \00000.' —— [6,8/ &0
/ \ —— [8,9] &1
.
/ —a— [12,5] &2
e
- \ —— [15,5] &3
.

20 30 40 50
number of steps

FIGURE 4.4: Amplification of marked
nodes with §teps for §tatic labelling in the
case of (a) open grid and (b) torus. In case
of open grid, the probability of marked
nodes [6, 8] and [8, 9] coincides, while in
case of torus, the probability of all marked
nodes coincide with each other.
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FIGURE 4.5: Probability di§tribution at
top Step for different layers with a single
marked point in each layer found using
quantum-search algorithm with &atic la-
belling Top: Open boundary condition
Below Periodic boundary condition
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As a consequence of separability of algorithm to independent QWSA on each
layer, the optimal time 7, is the same as that for a conentional QWSA. Although,
since the probability weight of wavefunétion on each layer is scaled down by the
factor of number of layers, as a result the success probability p,. is also scaled down
by the number of the same factor. Therefore, the success probability associated with
each layer is O(1/ (m 1n N)).

4.2.2  Dynamic Labelling

For the dynamical labeling, where we allow for inter-layer transition, the coin space
includes an additional diretion to facilitate such motion (along the diretion of the
labels). The corresponding Hilbert space is spanned by a basis {|7, 7, k) ® |x, ) ®
l7) : 4,k € [0,]] &0 < x,y < N-1&0 < k < m — 1} which has dimen-
sion 8mN?. The Grover diffusion operator G; is elevated to a three-qubit operator.
There can be further analogous extensions to open and periodic boundary condi-
tions along the label diretion, but we will §tick to open boundary along the label
direction. Similarly, the shift operator becomes,

Sl j, k) ® |%,9,7,) = |1 -4,1- 7,1 -k)®

et () =3+ (D)
The modified unitary evolution for the search given by
U=U-R=5(G®I)-R (4.22)
where the search oracle is given by
R=1-2pY @Y > lowyl@ln)nl.  (+23)

. XeM,
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The initial §tate is a uniform superposition in Hilbert space. The modified operator
U is applied Lop times on this §tate, which amplifies the marked point along with
labels.

We demontétrate the amplification due to dynamic labeling for the case of the
open grid and torus with the same parameters as §tatic case in FIG. 4.6, and proba-
bility distribution at optimal time-§tep in FIG. 4.7. Note that in this case, the torus
(as in the case of $tatic labeling) has a unique Lop- While the open grid performs
much better than the §tatic labeling and possesses a close to unique Lop where all the
marked nodes are simultaneously amplified.

4.2.3 Scaling

This section investigates how the success probability of our search algorithm scales
with the lattice size. We illustrate this by considering the algorithm with two marked
nodes, {[0,0],[1,1]}, on lattices of varying sizes. In FIG. 4.8 presents the success
probability of individual marked points and the collective success probability (sum
of all individual success probabilities) for both §tatic and dynamical cases. We fit
the curve 2/ log(6N), which indicating that the algorithm exhibits similar scaling
behavior as the conventional QWSA in two-dimensional lattices [114]. Therefore,
the collettive sucess probability of our search algorithm scales as ©(1/ In(2V)), while
the success probability of individual marked point scales as O(1/m In(N)).
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Periodic boundary condition
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L

20 30
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FIGURE 4.6: Amplification of marked

nodes with §teps for dynamic labelling in
the case of (a) open grid and (b) torus.
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e o o o
e o 0 o
e o o o
e o 0 o
t=0

FIGURE 4.9: Particle moving in two-
dimensional lattice in discrete-time éteps.
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4.3 Quantum tracking problem

So far, we have examined our refined QWSA for searches on 24 surfaces using open
and periodic boundary conditions. We have established that in moét cases, the al-
gorithm works better for simultaneous amplification of multiple marked nodes at a
unique time Lop In simple terms, this implies that there exiéts a unitary operator U

such that U’ acting on a maximally superposed initial §tate can maximize the prob-
ability of the marked nodes. In this section we demontétrate a practical application
of the algorithm introduced in §4.2 for tracking a particle moving in real-time. We
consider a particle moving on a 24 surface and the time taken by the particle to move
one §tep is 9z (See FIG. 4.9). Let us assume that position of particle at an in§tance of
time #, = 20¢ withz = 0,1,2, ... is &, = (x,,,). Our aim is to find the trajettory of
the particle i.e. Z,.

A two-dimensional lattice represents the particle’s configuration space and la-
bels represent time §teps. For example &, = (x,,,) represents the coordinates
of the particle at time ¢+ = 2zd¢z. However, it would seem that associating labels
with time has an obvious disadvantage in terms of resources, since the time vari-
able continues to increase and so does the labels, hinting at a requirement of po-
tentially infinite resource well. This in turn makes our labeling algorithm praéti-
cally inapplicable owing to our limited resources. To overcome this problem, we
will recycle our labels. Let’s under§tand this in more detail. Let us define layers
ly» by, Ly, ... representing the configuration space of a particle at time 0, ¢, 29¢, .... Fur-
thermore, we assume that the probability amplification takes computational time
(5,) such that 5y, 51,5, ... < O(T). In general, the maximum time of amplification
T is greater than the time §tep Jz. Therefore, the information about the particle’s
appearance must remain in the constructed oracle for at moét time 7". Let us define
masm = [T [d¢] which is the number of §teps that particles take in time 7" which is
the least number of layers required. Therefore, we can write the oracle as



4.4. Quantum circuit implementation
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where f(x,y) = ©(x) — ©(y), and O(x) is Heaviside §tep function. The shift-
operator is used in accord with boundary conditions, and the coin-operator is the
Grover diffusion operator G, as we are considering single-layer amplification. The
time profile of probability distribution for different layers is provided in supplemen-
tary material.

4.4 Quantum circuit implementation

In this setion, we will propose quantum circuit implementation for quantum walk
search for ordered marked nodes as well as quantum tracking problems that have a
similar §truture. In FIG. 4.10, we show a schematic of a quantum circuit for quan-
tum walk search. The qubits ¢y, g;, ... , g, represents position space so that 2P = N,
and ¢, ¢, represents coin space. The initial §tate which is a uniform superposition in
position and coin space is conétructed through the Hadamard operator. The mod-
ified unitary operator is then applied #,, times which gives probability amplitude
amplification for marked points.

For our QWSA with labelled marked points, we introduce extra qubits for the lay-
ers. FIG. 4.10 represents a schematic of a quantum circuit for §tatic labelling with
additional Q;, Q,, ..., Qp qubits for 2P = m layers (or labels). The circuit for dy-
namic labelling is similar except we have three qubits for coin space. The equivalent
circuit for quantum tracking is also similar to that for QWSA with §tatic labelling.
The specific §tructure of the oracle and other elements depends on configurations
of marked points and turns out to be control unitary operations. We conétruct the
coin, shift and the oracle operator, explicitly below.

4.41 Coin-Operator

The explicitimplementation of coin and shift operator, and complexity in the discrete-

time quantum walk has been previously done in [39, 125-127]. In QWSA, the coin
operator is a Grover diffusion operator in two qubits. The optimal circuit con-
§truction for a qubit real unitary operator requires at most 2 CNOT and 12 one-
qubit gates [128]. Although, the Grover diffusion operator can be implemented
with 1 CNOT and 4 one-qubits gates (See FIG. 4.11). Another way to implement
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the Grover diffusion operator is to write it in Hadmard basis, in which, it is given

by [129]

1 0 0 0
0O -1 0 O

A= 0 0 -1 0 (42'5)
o 0 O 1

Implementing the operator A4 as a quantum circuit becomes $traightforward by in-
corporating ancilla qubits. These ancilla qubits serve to verify whether the input
comprises entirely of o’s, allowing for the inversion of the phase if it does not.

4.4.2 Shift-Operator

The flip-flop shift operator is a conditional incrementor over position space qubits.
To explicitly implement this, we §tart with mapping computational basis associated
with position x = 0,1,2, ..., VYN - linto qubit basis by representing tate |x) into
its binary representation (similar for y diretion). As discussed in [126], we can
conétrutt an incrementor circuit as shown in FIG. 4.12 using a series of multi-qubit
CNOT gates. A n-qubit CNOT gate can be decompose into = 167 Toftoli gates,
achieving O(z) bound [130]. An analogous circuit of decrementor can also be con-
§tructed using a multi-qubit CNOT gate by changing the control qubits as shown in
FIG. 4.12. We can, therefore, construct a flip-flop shift operator using a conditional
operator over coin qubits as shown in FIG. 4.13.

In case of multiple layers, the translation operator couples with qubit representing
layers depending on §tatic or dynamic labelling. As we seen in §4.2, the algorithm
decouples for $tatic labelling, therefore the shift operator remains the same. In case
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€1 —{ Us(n/2,7/2,—7) }—4»—{ Us(7/2,0,—7/2) }7
e % Us(r/4, —1/2,7/2) }—@—{ Us(3n/4, —7/2,7/2) }7
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12 12 ‘ I

of dynamic labelling, we add an extra coin-qubit to allow inter-layer flow, as shown
in FIG. 4.13.

4.4.3 Oracle

Finally, consider the oracle R which we claim to be a controlled Grover diffusion
operator (up to a phase), where control qubits are marked $tates. To prove this,
consider the form of oracle in EQ. (4.8). This operator atts trivially (as identity)
on the $tates which does not belong to set of marked nodes A4, while it acts as
I® (- 2|;Z.(d))(;kf(d) |) if the §tate belongs to M. The operator [ — 2|%(d)) (;ﬁc(d) | =
—G“ is Grover diffusion operator up to a phase of ¢™. 'This is results follows for
the case of multilayer search oracle except the control operation is over &ate |x, , 7,)
where (x,y) € M,.

To illustrate this result, consider a quantum-walk search on 2x2 lattice with a marked
point chosen to be (0, 0) without the loss of generality. We map the position $tates
in qubit $tates as shown in FIG. 4.14. The oracle can be written as

R=1-2y2) g ® |00)(00] (4.26)

The fir§t term doesn’t affect the §tate and the second term only contributes when the

FIGURE 4.11: Implementation of Grover’s
diffusion operator for 2-qubits done using

Qiskit

FIGURE 4.12: Translation operator for
qubits in position space. Left: 7-qubit in-
crementor circuit. Right: 7-qubit decre-
mentor circuit.
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circuit needed for §tatic labelling. 0
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position $tate is a marked §tate |00). More explicitly,

|0000) — %(|00) — [01) - [10) — [11))|00)

10100) —> %(-|oo>+ 101) = [10) — [11))]00) (
11000) — %(—|oo) — |01) + |10) — |11))|00) +7)
[1100) — 3 (| - 00) = [01) - [10) + |11)) 00).

Therefore, it’s a control operation over marked §tate |00) with controlled operation
-G FIG. 4.14 shows the quantum circuit implementation of this Oracle. Con-
sider the case of ordered marked points with two categories, therefore, we require
one additional qubit for two layers. Further, we assume that the two categories con-
tain marked points |00) and |11) (See FIG. 4.15). The oracle operator R can be writ-
ten as

R=1-2]y?)y? | ® [100)(00] ® [0){0] + [11)(11] ® |1)(1[]  (4.28)
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where we assumed $tatic labelling (but easily generalized to dynamic case). Follow-
ing the similar argument as before, the oracle operator only acts non-trivially to
marked labelled &ates which belong to set AZ, in this case, |000) and |111). More
explicitly,

100) 1,7, 7. — 3 (100) ~ 01} ~ 10} ~ |11)) |, 7, .

0], 7) = 3(~100) + [01) = [10) = [11)) |, 7. -
4.29
10} 1,7, 7.) = 3 (~100) = [01) + 10} = [11) |, 5,2

10,5, 7) — 5 (1~ 00) ~ |01) ~ [10) + [11)) |, 7,

where |x, y,7,) = [000), |111). As before, this is controlled Grover diffusion opera-
tor over marked position $tates acting on coin §tate.

4.4.4 'The complexity scaling

In this section, we analyze the complexity scaling (resource required) of the quan-
tum algorithm both with sy§tem size. We will focus on quantum-walk search with
ordered marked points from which the complexity of the quantum tracking prob-
lem can easily be derived.

As we previously seen the Hilbert space dimensions of single and multi-layer
amplification algorithms are 47N and 8mN respectively, where N is the number
of lattice points and 2 is the number of categories or layers. Therefore, the qubit
requirement scale is O (log(7./N)) with sy§tem size. The major cost of the operator
in the algorithm comes from the flip-flop shift operator. We can find how many
Toffoli gates required for the flip-flop shift operator for single-layer amplification

IR
— ~ 2
4><;162 4(D* + D)

which is ©(4D?). For the multi-layer amplification case, this modifies to = 4(D* +
D) +8D'(D’ + 1) due to the additional operator needed for hopping between lay-
ers. The n-qubit Toffoli gate requires at least 22 CNOT gates [131], therefore, the
number of CNOT gates required is approximately of order 0(8D?). The construc-
tion of the oracle requires control operation of Grover’s diffusion operator as many
times as the number of marked points. For a large data set and a small number of
marked points, we expect the co$t due to shift operator to dominate, and therefore
resource requirement is polynomial in the number of gates required for a single §tep.
Therefore, the complete algorithm requires at least = t()p@(D2 ) CNOT gates.

|00) |01)

|10) |11)
qi1 I
q2
|
C1 —
—G®@
Co —

FIGURE 4.14: Left: The qubit space
for 2 x 2 lattice along with coin basis.
Right: Quantum circuit implementa-
tion of Oracle for 2 x 2 lattice. The
Pauli X operator is used to flip the bit
to implement control operation over
|00) position basis.
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FIGURE 4.15: (a) The qubit space for
2 x 2 lattice with two layers with coin
basis. ‘The marked nodes are shown
with blue color. (b) Quantum circuit
of oracle for 2 x 2 lattice with two lay-
ers for marked nodes |000) and |111).
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4.5 Outlook

The conventional QWSA is aimed at finding a marked node in a graph but lacks the
ability to characterize the nodes when more than one is present. We propose a mod-
ification that locates multiple marked nodes and characterizes them with respect to
an exiting (chronological) ordering. Clearly, our algorithm can also be extended
to cases where the categorization of marked nodes is based on some attribute other
than temporal. This involves the introduction of extra qubits associated with cat-
egories. We give an explicit form of oracle in two separate cases depending upon
whether there’s an inter-flow of probability between categories. As a concrete appli-
cation, we used our formulation for particle tracking in real-time. Finally, we also
conétrutt an equivalent quantum circuit for the algorithm, with the prospect of in-
tegration with the contemporary quantum hardware. However, this is a beginning
Step, where we have just scratched the tip of the iceberg, and a lot more needs to be
amended in the algorithm before it gets market-ready. We will point out some im-
mediate follow-up questions that we intend to resolve and extend the scope of the
algorithm:

* More generic geometries: We have considered the algorithm on a simple
two-dimensional lattice w/o boundary conditions. The immediate generaliza-
tion would be to consider more generic and perhaps non-trivial geometries
with intricacies. For example, we would consider a percolation lattice in 24
with different weighted edges and on-site potentials. These geometries rep-
resent various scenarios in real-time syStems. Another direction worth pur-
suing is the search on graphs themselves. A part of the problem is already
addressed in §4.3 where we considered the simpler version of [132] where the
authors discuss searches on temporal (time-varying) graphs. We would like to
see if our algorithm can be extended to address multiple temporal graphs with
intersecting vertices. This would be helpful in elevating the predictability of
the algorithm from a tracking to a tracking-intercepting algorithm.

* Localization and Quantum State transfer: These two concepts are seem-
ingly disconnected. Localization explains how particle propagation (plane
waves) can be reftricted (localized ditribution) in the presence of disorder in
the media [133]. In particular, it is demonstrated in the context of DTQW
in various settings [134-136]. Quantum State transfer concerns the propaga-
tion of a specific quantum $tate from one node (origin) to another (target)
through a complex network (e.g., a spin chain) [137, 138]. These two ideas
are not quite connected with each other and are more disconneéted from
the QWSA. The question, however, is whether we can eétablish a conneétion
between the search algorithm and the localization aspect by thinking of the
search oracle as a disorder in an otherwise non-chaotic media. Similarly, in-
§tead of taking a complete superposition for an initial §tate, can we single out
the marked nodes with any biased (a specific) initial §tate? The real question
in both scenarios is to interpret the “Search Oracle” R as a disorder operator
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from the physics point of view, which in turn can help underétand the search
oracle better and amend it for other purposes based on insights from physics.

5I






@@@ Nielson’s complexity meets circuit depth 5

Although quantum computers are capable of solving intere§ting computational prob-
lems, but it remains a challenge to find efficient quantum circuits that can perform
these computational tasks. It is, therefore, of great interest to ask, What is a opti-
mal quantum circuit for the implementation of a unitary operation? The answered
to this question led to the concept of Nielson’s complexity, which will be central
topic of this chapter. In their paper [139, 140], Nielsen et al. recasted the problem of
finding optimal quantum circuits to finding the shorte$t path between two points
in certain curved geometry, thereby, opened the possibility of using the mathemat-
ical techniques of Riemannian geometry to suggest new quantum algorithms or to
prove limitations on the power of quantum computers.

Nielsen’s Complexity (NC) is conjettured to quantify the optimal number of
quantum gates needed to construtt the optimal number of quantum gates needed to
conétrutt a target §tate §tarting from a reference §tate. Therefore, in an optimal quan-
tum circuit, one would expect a some relation between the NC and circuit depth —
an integer number that counts the maximum length in the circuit between the input
and the output. However, much we wanted otherwise, the exaét conneétion of the
NC and circuit depth in quantum circuits is far from being fully under$tood. The
reason is the ambiguity of precisely mapping the complexity measure to the quan-
tum circuit pi¢ture. A better under§tanding of a possible link between circuit depth
and NC proposal could provide an analytical handle on the practical circuits build
using quantum gates and ask whether the circuit in question is optimal. From the
reverse point of view, it is only logical to bring the analytically well-defined notion
of circuit complexity proposal closer to actual quantum circuits. Otherwise, relat-

ing the mathematically computed NC to something physically meaningful becomes
hard.

In this chapter, we will try to fill in this gap between the NC and circuit depth.
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This length is usually defined in terms of
layers of gates atting in parallel.
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The Hilbert space of 7 qubits has a natural
tensor factorization

H=CQ Q€.
The geometry of the set of (unit-
determinant) unitary operators U (%)
that aéts on this Hilbert space. In this case,
this set is

U) =« (C”) =SUR").

This corresponds to a choice of gate set in
the quantum computation piture, where
we allow up to k-local gates in out circuit
but do not allow more nonlocal gates.
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To this end, I'll compute the NC for the unitary evolution of the discrete-time quan-
tum walk as well as the circuit depth by explicit quantum circuit construétion. Our
results shows that the both quantities follow the identical behavior in terms of num-

ber of walk §teps.

5.1 Geometry of SU(2")

In this seftion, we consider the explicit formulation of circuit complexity in space
SU(2”) of n-qubit unitary operators. We begin with a basis for the Lie algebra with
some notion of locality which is essential to identify some generators in the Lie alge-
bra as local or “simple”, and the reét as “complex”. In the geodesic framework, it is
natural to choose a k-local subspace of the Lie algebra of the unitary group manifold
to correspond to “simple directions”. We may think of the elementary gates of the
quantum computation viewpoint as being exponentials of these simple generators.
For the qubit case SU(2"), there are a couple of natural ways to proceed. We could
pick the “Pauli basis”, namely products of Pauli matrices acting on individual qubits,
as our basis of generators. The second choice is to consider the gamma matrices y,

with 4 € {0, -, 2z — 1} which satisfy the Clifford algebra (with }/; =y,):

Do nd =20 - (s-1)

Now consider diétinét ordered produtts 7;1 0, = Yoy Ve withm € {1, ...,2n} and
a, < a, for p < g. We will often denote these operators as simply 7;, where 7
§tands for the multi-index 4, - 4,,. The total number of such ordered produéts is

Zf::l >*C,, = 27" — 1. This is precisely the dimension of the Lie algebra su(2"). It
is simply to make such ordered produéts of gamma matrices Hermitian by inserting
appropriate fattors of 7. Such a cons§trution is a basis for s11(2”). Furthermore,
k-local generators of the Lie algebra are simply those involving £ or fewer gamma
matrices.

Our next §tep is to come up with a right-invariant metric which penalize the
motion in the direction of nonlocal unitary operators. In our case, we want to deter
motion in direftions which correspond to generators involving products of more
than k£ gamma matrices. We begin with computing the §truture constant ﬁj of the
Lie algebra defined as

[, T = ifT; (52)
Using these, we calculate the Cartan-Killing form

Lt
K== fl (5:3)

(where b is the dual Coxeter number) which is a positive-definite bilinear form. To
build the notion of simple and hard directions in the Lie algebra, we construt a new
positive-definite bilinear form on s1(2")

Gy = K (5-4)
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where the numbers ¢; are “coét factors” which encode the information about our
choice of local and nonlocal directions. Then a right-invariant metric g can be de-
fined at an arbitrary point U on SU(2") by simply taking

WX, Y)=G6xXU,Yyu™ (s-5)

where we have used the group §tructure to transport the tangent vectors X and ¥’
from U back to identity then applied. We will generally take ¢, = 1 if the generator
T; consists of & or fewer gamma matrices, and ¢; = 1 + g with ¢ > 1 otherwise.
Having chosen our coét fattors, the geodesic equation on SU(2”) with metric is
given in terms of the Lie algebra metric and §tructure conétants by the Euler-Arnold
equation
G dav’

i /
v TVIG (5-6)

where the velocities V" (s) control the unitary path the geodesic follows via

UG = esp|-i [ asri] (57)

and we have made use of the path-ordered exponential to solve the matrix equation
for the unitary operator

au i

i ()ZU(s) (5:8)
Finally, we impose the boundary condition U(1) = U, for some target unitary
whose circuit complexity we wish to §tudy. This complexity is given by the geodesic

length
1
BIU o] = min fo ds(G V() (5.9)

where the minimization is over all geodesics from the identity to U -

preliminary required, we will talk about target unitary of our interest.

Having this

5.2 Setup
After a brief introduction to the circuit complexity and it’s §tructure in SU(2"), I’ll
setup the problem of intereét i.e. a unitary U of interest. Consider one-dimensional
discrete-time quantum walk (DTQW) governed by

U=S-(CH &I (5.10)

where S is the shift operator given by

S=2 (UNA1® [x+1)(x| +11)(L] ® |2 = 1)x]) - (5.11)
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Due to large dimension of unitary, we
can not directly find the complexity of the
quantum-walk. However, as we will see,
we will work with reduce dynamics in the
coin space.
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and the coin operator C(¢)

—sin@ cosd (5.12)

(o) = [ cosd sinﬁ] '

The unitary operator lives in %, ® %, which is a (4N + 2) x (4N + 2) dimen-
sional space. The initial §tate is chosen to be positioned at the origin with an equal
superposition of the coin §tates,

w(0)) = DD g 1y (s.)

V2

After #-§teps of evolution,
[¥(2)) = U'|¥(0)) (5.14)

can be written as a general superposition of the |1) and |]) $tates,
[¥(2) = > w101 + 1)) . (5.15)
The coefficients can be recursively solved from the relations,

T 1 ol
Y = COS 5%—1,t—1 +sin 9%—1,:-1

%it = —sin 9%: + cos ﬁz/l

+1,2-1 x+1,2-1

(5.16)

The probability distribution as a function of the time and position is given by p, , =

Wxtt |* + le .|*. In order to proceed, we consider the reduced density matrix,
PO =w YONYO| = > pli) ]
l’,jET,l
P = Z WxT,f | 2
P = Z %ctz(%cl,t)*

PH=P AU =1

(5-17)

By conftruction, trp(#) = 1, and the resultant is a mixed $tate density matrix in the
coin space ().

5.2.1 Canonical Purification

We §tart by canonically purifying the reduced density matrix which begins at com-
puting the eigenvalues of the matrix p(z) given by,

o) 1+,1—-4detp
t) =

2.() = ———=. (5.18)



5.2. Setup

0.65
n
nn a0
$0.60 M
0.55
0.50
0 20 40 60 80 100

Steps

and corresponding eigenve&tors |y, ). The resultant canonically purified &tate,

|@(2)) = VA, () |¥s ) + VA (D |y, v) (5.19)
is a 2-qubit §tate where |¢, ¥) = |¢) ® |¢). This is our &arting point for the com-

plexity computation. It is motivated by the following principle. Since complexity
computation is known for pure §tates, the corresponding evaluation for mixed $tates
entails an additional intermediate §tep of purifying the mixed §tate to a pure §tate

n 2n
at the cot of dimensional oxidation from #?> — %> space. The corresponding
entanglement of purification as a funétion of time is,

EoP(z) = —tr (_,opr logﬁpr) R (5.20)

where p,. = tr, (|D(£))(D(2)]) . The density matrix p,, is the reduced density ma-
trix from the purified §tate where tr, implies the partial trace of the second qubit.
The funétional dependence of entanglement of purification on §teps is given in FIG. s.1.
It follows essentially the same behavior as the entanglement for the quantum walk.

To conclude the se&tion, we would like to comment on the continuum limit of the
walk and its implications on purification. As was eStablished in [141, 142], the con-
tinuum limit of the one-dimensional walk is given by the Dirac-Hamiltonian for a
single free fermion,

cosd sind ) ( 0 —7sin @

Hip) = —ip ( sind —cos?d isind 0 (521)

This Hamiltonian characterizes a pure fermionic §tate. To put this loosely, we can
conétrutt a 2-particle &ate (also a pure §tate) by,

H(pyp,) =H(p)®L +1, ® H(p,). (5-22)

FIGURE s5.1: Entanglement of purification
(EoP) with teps for canonical purification.
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This approach is identical to considering
the vectors u, € SU(4) and then optimiz-
ing over the parameters. This optimization
is over 15 parameters which coincide with
the parameterization of Uy, € SU(4).
We perform the optimization numerically
by sampling over #-samples of choices of
the initial random vectors v;. The number
of samples for this optimization depends
on whether the §tandard deviation of the
complexity computed from each sample
reaches saturation. We will report on this
saturation of standard deviation in the next
section after discussing the notion of com-

plexity.

It is unclear, as of yet, how these response
functions are connected to the §trengths
(or, more specifically, numbers) of quan-
tum gates needed to construt an actual
quantum circuit. However, at this point,
we will refrain from addressing this issue
and will come back to this at the end of the
work.
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s.2.2 Target Unitary Operator

Our §tarting point is the construction of a unitary operator U, such that,

target
|(D(t)) = Utarget|q)R> > (5-2'3)

where |®(r)) is the target §tate given in EQ. (5.19) and | @) is a reference §tate chosen
to be the most simple 2-qubit state |0) ® [0). We call U, as the target unitary
operator that converts the reference &tate into the target &ate. Since |®(#)) is time-
dependent, we expect U, to be a time-dependent matrix as well. However, the

matrix is not fully constrained by EQ. (5.23). We begin by conétructing,
Utarget = [u() ul u2 113] (52'4)

where u, are column vectors of dimension 4x1. From EQ. (5.23), we getu,, = |D(z)),
satistying |u, |? = 1 from normalization of |®(¢)). The unitarity conétraint UU T
I enforces,
T
uu; =9, (5-25)
which is incidentally the condition for Gram-Schmidt orthonormalization. To §tart
with,

=1 <u, V#)
o Vi
u, =v;, - Z > (5.26)
= [l
7=0 1

where ||| is the norm of the vector. We choose v, to be random veétor,
v;=a, +1:b,, (5-27)

where a; , b; € rand,y ;). Such a construction of target unitary U, is not unique,
therefore, in what follows, we will consider average of complexity taken over large
number target unitaries so that the complexity is well converged.

5.3 Circuit Complexity
Once the unitary target operator U, is determined, we proceed to compute the
complexity of the operator C[U,

targ get

target
] using the formulation presented in §s.1.

5s.3.1  Two-qubit system

We begin by constructing a path ordered unitary operator for a 2-qubit circuit,

UG = ep|- [ asr] (528)

where V(s) measures the response function for the generators 7; € SU(4) group
and & denotes path ordering, which denotes the non-commutativity of quantum
gates. The generators 7; are built from Majorana fermionic operators y, (satisfying
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EQ. (5.1)) are given by, b
=%y, VA (5-29)

where &, are the bitwise representation of the integers representing the generators,
1<i=2%,+2%, +2'b, + 2%, <15, (5-30)

and ¢ = b, + b, + by + b,. The fermionic generators y, [143] and explicit forms of the
generators 7; are given in appendix 6. We also define the §tructure constant and the
Cartan killing forms (b = 32 is the Coxeter number),

7 L
ﬁf _ —ZtrE[YZJ}] K.=—=f"f | (5-31)

With the choice of normalization K; = z?l-j and hence G; = Cl»(;l-j. The quadratic cot
funétion that defines the complexity is given by,

1
C[U] = min fo ds[G VT GV(S), (5.32)

where the functions 7 (s) satisfy the Euler-Arnold geodesic equations,

dV“ - LG V). (533)

The minimization is over all geodesics leading the affine path from s = O to s = 1. The
minimization takes the geodesic solution to the Euler-Arnold equation EQ. (5.33).
Note that the explicit solutions are relevant for the construction of the unitary ma-
trix, but in so far as the complexity is concerned, only the sums of squares of the
functions are important. However, depending on the solutions, the sum of squares
of the funétions form simple subsets which are constants and independent of s. In

this sense,
C[U) =VATA + BTB + -, (5-34)

where A4, B, ... are the subsets. These solutions can be obtained by matching,

Uls =1) = Uppger = Vils = )T; = 7l0g[U ] (5.33)

target

In the next few seftions, we will solve EQ. (5.33) explicitly for &£ = 1,2, 3 local cases
and conftruct the complexity explicitly.

5301 k=1

For this case, we have the constants of motion (V}(s) = v;) in the subset B = {u, :
5 <7 < 10}. The remaining equations are of the form,

()
dl; + 2udl st (s) = 0

(5-36)
dd, (s
Ty a0 =0

Recall that ¢; are cost funétions such that
¢; = 1 whenever 7} is built from & or fewer
y, otherwise ¢, = 1 + p with g > 1.
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where
T
CAOR I AOIRAOIRAOERAC] (537)
- .
dy(9) = [Va(9) V(o) Wa() Ks0)]
and
0 vs Ug vg
_|7»s O )
M) = v —v; 0y
L—vg vy -v, 0
[0 0 0 0 -V (5:38)
0 0 0 0 Wl(s
My(s)=| 0 0 0 0 -V (s)
0 0 0 0 K
R A A R AT
which satisfy the property /%1T,z = —Jl, ,. The corresponding solutions are
,(s) = exp [Zlu/ll(l - J)] di(s=1),
(539)

1
A, (s) = exp [ﬂf d;'./%z(xl)] d,(s=1).
where 2 = 2u¢/ (1 + ). Using the properties of the matrices ./, ,, we can write

,9117:2(_;)5211’2 (s) = 'QQ1T,2(5 = 1)52{1,2(5 =1) (s-40)

as conftants evaluated at s = 1. The metric of measure is independent of the affine
parameter s and it follows that the complexity is

ClU) = st sty + (1 + ) (BT B + AL st . (5.41)

5302 k=2

In this case, the constants of motion form the subset B = {v; : 1 < 7 < 10}. The
remaining variables form the vector

T
d(s) = [0 Vo) Vsl Vo) Vis(9)] (5-42)
satisfying
dd(s) 2u B
7t m/ﬂﬂ(f) =0 (5-43)
where
0 —vy vy v -y
Y10 0 -v, v vy
M==v5 v 0 -5 - (5-44)
vy vy Vs 0 v

60 v, -—vz v, -—u 0
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which satisfies ' = —. The solution is given by
A (s) = exp (all(l - 5)) A (s =1) (5-45)

with @ = 2u/(1 + #). Again, the norm of the vector &/ (s) is independent of the
affine parameter s, and the complexity,

ClU) = BT B+ (1+w)sdTdl . (5.46)

5313 k=3

Finally, for the three local cases, the only con$tant of motion is a the subset 8 = {v;5}
with only one element. The remaining variables form the veétor,

d(s) = [ Vi)~ V()] (5-47)
which satisfies
A (s) = exp (2/4./%(1 - 5)) dA(s=1). (5.48)
where
[0 0 0 0 0 0 0 -u5
0 0 0 0 0 0 s 0
0 0 0 0 0 -5 O 0
o 0o 0o 0 o4 0 0 0
M=o 0 0 -4 0 0 0 0 (5-49)
0 0 Uis 0 0 0 0 0
0 -uv5 O 0 0 0 0 0
Logs 0 0 0 0 0 0 0 |

In this case, the exponentiation can be done exattly, yielding the (8 x 8) dimensional
“magic matrix”. In this case, the complexity takes the simple form

ClU] = ‘/.QYTQY +(1+ ;4)11125 . (5.50)

For 4-local case, V;(s) = v, forall =1...15.

5.3.2  Quantum-walk sys§tem

Given the circuit complexity of two-qubit sy§tem, we can proceed to find the com-
plexity of the DTQW target unitary. Before proceeding, there is another subtly to
care about. The two-qubit initial |¢(#,)) can be evolved to |¥(z,)) using two-ways:
1) Using the target unitary from reference &tate |#(z,)) and target §tate |y (2,)) 2) Us-
ing the set of target unitaries U, from reference &tate |¢(z,_;)) and target §tate |y (2,))
so that the evolution operator becomes U = [, U (See Fig. 5.2). These two ways
lead to two different definition of circuit complexity, explained below.

[¥(tiv2))
°
U,

Uit1

P

[ (tir1))

P U;
[ (t:))

FIGURE 5.2: The two ways for com-
putation of target unitary from §tate
(0) 0 [§(0)). The direét car-
get unitary corresponds to Ul and
Step-wise target unitary corresponds to
U..U.

i+1~7
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This is more significant from point of qua-
tum circuit picture where the final §tate is
obtained from set of unitary gates.

From computational point of view, it is im-
portant to note that if |¢;) = Uly(z))
and |¥(t,,)) = U, l¥ (%)), then, the
[y (4,1) = Uz+1UjW(€)>
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5s.3.2.1  Direct complexity

In this case, we fix the reference $tate to the initial §tate |¥(%,)) = |0) ® |0). Then,
we find the target unitary U(z,) by considering the target §tates |(z,)) — the State
of quantum-walk at time #,. The complexity (refers to as direct complexity) is, there-
fore, corresponds to target unitary U(z,). As apparent from the definition, this com-
plexity doesn’t affect by the path taken by the walk to reach |¢(2,)), but only the the
final §tate.

The corresponding plots for the £ = 1, 2, 3 local cases are shown in Fig. 5.3. We
observe that the complexities for different time$teps with respett to the reference
§tate behave in an uncorrelated, fluctuating way. However, it is worth noting that
the flu¢tuating values decrease as we increase the notion of locality in the picture. In
an explicit way, this basically means assigning fewer penalty factors to more and more
generators of the SU(4) group. From a gate perspective, this can be under§tood as
more and more quantum gates becoming easily available as we increase the locality.

5.3.2.2  Step-wise complexity

Another way is to consider the evolution in §tep-wise manner. More explicitly, the
target §tate |¥(z,)) is obtained from the initial reference §tate |¥(%))) as |¥(%)) —
v (1)) — - — |¥(z,)) in &ep-wise manner such that

Uy (@) = ¥ -

Therefore, the corresponding total complexity is the sum of individual complexities
for each §tep. The §tep-wise complexity is shown in Fig. 5.3 which grows linearly as
the number of §teps. The growth persists forever, which is meaningful from a circuit
conétruction point of view. This circuit successfully simulates all the §tates along
the quantum walk at different §teps. Here also, we find that the slope of the curves
decreases as we increase the locality. It, therefore, seems to be universally true that as
we make more and more generators (or equivalently quantum gates from a circuit
perspective), it takes fewer number of gates to construtt the optimized circuit.

In FIG. 5.4, we plot the slope of the §tepwise complexity plots for different local-
ity notions with varying coin angles. Whereas the slope values increase with decreas-
ing locality, which is expected from plots in FIG. 5.3 already, we notice that there is
a dip in the slope for each of the cases around coin angle value 27/3. These plots,
therefore, indicate that among different coin angles, the complexity is least for the
coin with angle ¢ = 27/3.

As we pointed out in §s.2.2, the obtained target unitary operators are not unique,
therefore, it is important to take sample average such that the complexity is well
converged. In FIG. 5.5, we showed the §tandard deviation of the complexity for the
time-§tep £, as a funétion of number of samples. The §tandard deviation converges
to unique value for large number of samples which ensures the convergence of the
complexity.
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5.3.3 Fermionic Hamiltonian in continuum limit

Before concluding the setion, we would like to point out that diagonalization of
the two-particle fermionic Hamiltonian in EQ. (5.22), leads to the following con-
Struction,

V(s) = o515 + vgT5 + 05 Tys = —iH, (py, py)t (5-51)

which solves for o5 = 0 and

-

——

-
-
-
-

e ——
e 4 —
o —

40 60 80
Steps

FIGURE 5.3: “Direct” complexity as func-
tion of unitary operator U, (¢) for § =
7 [4fork =1,2,3local operators. Thescat-
tered colored points are the actual values
derived, whereas the dotted colored lines
denote the §tepwise averaged values.

Y10

=5 (V2 + 2 02 = [l 4 200) (2 272) o < 2+ 34 o+ 278) (o + 292))

(5-52)

Vs

for m = sin 8. Consequently,

A A,
C= f dpdpyvfy + vis = 25—4 t A log A

This complexity grows linearly with time. However, this complexity does not indi-
cate the quantum walk completely but only an approximation in the continuum
limit. Hence the complexity does not demonétrate the nuances of the walk com-

pletely.

(5-53)

5.4 Quantum circuit

In this section, we conne& the linear growth of cumulative §tep-wise complexity
found in §5.3.2.2 to consétant circuit depth of explicit quantum circuit associated
with target unitary. The target unitary operator can be associated with a 2-qubit
circuit, as shown in FIG. 5.6. To find the circuit depth of a quantum circuit, one

5 (Vo2 52 .12 = o 2 2+ 22) = o 2 4 2+ o+ 290) (o 212)|
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FIGURE 5.4: Slope of linear complexity
with varying coin angle § with Left : 1-local
operators, Middle : 2-local operators and
Right : 3-local operators.

IS =N

Standard Deviation
o
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Sample Size

FIGURE s.5: Standard deviation of the
circuit complexity with an increasing

sample size of target unitary operators
calculated for the roth §tep of DTQW.

qo —0
Unitary

G —1

FIGURE 5.6: A general 2-qubit quan-
tum circuit for the §tep-wise unitary
operator.
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is required to decompose the unitary into a universal set of gates. For our purpose,
we will consider a 1-qubit gate U (4, ¢, A) and 2-qubit CNOT gate with the explicit

forms as following

cosd % sind
Us (6, ¢, 2) = —¢sind P cos 8 (5:54)
and
1 0 0 O
0 0 0 1
CNOT=|/ o | o (555)
01 0 0

In FIG. 5.7, we showed the explicit circuit associated with the target unitary for
a particular walk §tep constructed using QISKIT [144]. The circuit associated with
the target unitary for different walk §teps has a contact depth of 7 layers with pa-
rameters &, ¢, and A changing values. Therefore, similar to the dirett complexity
§tudy using Nielsen’s proposal, the coét of conétructing the unitary seems almost a
consétant function. Therefore, if we again conétrutt the circuit §tepwise and cumu-
latively sum the depth of the individual circuits, the depth grows linearly again with
the éteps (see FIG. 5.8), in agreement with the complexity computed from Nielsen’s
proposal.

It’simportant to emphasize that relation between £-local case in context of Nielsen’s
complexity (NC) and k-qubit gate in context of quantum circuit is not very well un-
derstood. If we naively consider that both are equivalent to each other, then £ = 1
should correspond to single qubit quantum circuits for target unitary. However,
since the universal set of quantum gates atlea$t requires a two-qubit gate [145] as
known from the Solovay-Kitaev theorem, one can not conétruct a general #-qubit
quantum circuit (7 > 1) with just single qubit gates (unless target unitary is separa-
ble into 7 independent single qubit gates which is not true generally or in our case).
The case £ = 3 on the other hand can be realised for 7 qubit quantum circuits with



5.s. Discussions

Global Phase: 5.88091136683942
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n = 3. However, in our case, we have a two-qubit target unitary, which can not be
written in terms of three qubit quantum gates. These facts as mentioned above sug-
gest that £-local operators should not in general be under$tood as £-qubit gates, and
their exalt relation needs further investigation. However, for the two-qubit circuit,
our result indeed shows a qualitative similarity between the two concepts. It will be
intereéting to extend these §tudies to higher qubit circuits, where one can explicitly
check if such similarities exist for £ > 3.

5.5 Discussions

We conclude the chapter with a brief account of what has been answered and what
more remains to be done. To begin with:

* We have computed the complexity for the one-dimensional quantum walk
using a SU(2) coin. The walk entangles the position and internal degrees of
freedom and produces a mixed §tate on partial tracing over the position de-
grees of freedom. Consequently to measure the complexity of the mixed §tate,
we fir§t canonically purify the mixed §tate and then evaluate the complexity
using an approximate 2—qubit quantum circuit.

* We compute and compare the complexities of the purified §tate using both
the diret evolution operator and the §tep-wise evolution in the quantum
walk. The complexity function oscillates with the §teps around a mean value
which can be associated with the depth of an average quantum circuit. The
§tep-wise evolution, however, connects more with the actual quantum circuit
and the quantum walk picture since the dire¢t evolution ignores the §teps in
connecting the geodesic from the initial to the final §tep. As such, the &tep-
wise evolution is a dire¢t implementation of time-ordering and a successful
simulation of the DTQW using a quantum circuit. The complexity of the
Step-wise evolution cumulatively grows with the §teps and is indicative of the
growing size of an associated quantum circuit and its complexity.

* To give some context, we also implement a schematic quantum circuit us-
ing 1 and 2 qubit quantum gates to implement the §tep-wise unitary evolu-
tion. The circuit has constant depth and relates to the average complexity in
FIG. 5.3.

Us

0.0298, —7, —m/2

Us

1.85, —1.88, 3.05

Us

1.84, 0.231, 1.46

Us

1.74, —2.2, 0.241

FIGURE 5.7: Representing a 2-qubit quan-
tum circuit for the §tep wise unitary opera-
tor using QISKIT.

0 20 40 60 80 100
Steps

FIGURE 5.8: Quantum circuit depth
corresponding to target unitary opera-
tor corresponding to two-local case (es-
timated with explicit construction of
quantum circuit using QISKIT) with
varying timeéteps of DTQW.
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* Another upshot of doing the §tepwise evolution is that although we have §tep-

wise geodesics inétead of a full one, it can produce for us the §tepwise response
funétions which are valid for individual timeSteps. Let us say if we want to
write the Hamiltonian acting between $teps (#,_;) and #,, we can simply pick
the corresponding §tep-wise unitary U, (#,) and get an etimate of the Hamil-
tonian as

H(n) =~ loglU(:,)] (556)

since each timestep is of length 1. Now we can write this Hamiltonian as
H(n) = > V(n)T; (5.57)

to figure out which generator was effetive and how much during a particu-
lar time §tep. Finally, we can sum all those §tep-wise Hamiltonians with the
corresponding §tep functions and write down a complete Hamiltonian thatis
time-independent §tep-wise but gives rise to all the purified §tates correspond-
ing to the mixed one of the actual DTQW. This is somewhat analogous to
finding out the response functions for different quantum gates in the Nielsen
picture of complexity. This is a trivial task and the §ates being individually
randomly distributed, these fun&ions do not show up any particular nature
of growth or decay. However, it might produce further intereéting results in
the case of an explicitly chaotic quantum walk [146] or for a time-dependent
coin operator [136].

However, more questions have been uncovered by the exploration. Some of the
pressing questions, which we could not answer in this work due to lack of resources,
but intend to complete them in immediate future follow-up works are:

* Firét of all, the precise connection between the circuit picture and the contin-

uum formulation is &ill largely opaque. We have just implemented an exam-
ple circuit that can conneét with the §tep-wise evolution. However, the exact
nature of how the geodesic length is conneéted with the actual quantum cir-
cuit §ill remains to be explored further.

The di§tinction between the §tep-wise evolution and the unitary evolution is
based on the logic that one can view the §tep-wise evolution with some quan-
tum circuits and hence the size of the circuit grows along with its complexity
which exhibits itself in the linear growth. However, for real quantum systems,
the complexity grows linearly with time for early time and smooths out to a
constant. One reason for the discrepancy might be the fat that the dimen-
sion of the Hilbert space of the ate in quantum walk linearly grows with
time. In order to gain insights into this apparent confli&t, one way to move
forward would be to conne the quantum walk to the Hamiltonian of some
physical syStem, to get a more realizable connection with real-time sy$tems.
Consequently designing quantum circuits for the quantum walk will act as
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a bridge to gain more insights into the mapping of field theory complexity
with the actual circuit compiling complexity.
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@@@ Outlook 6

This thesis describes the wide range of ideas in quantum computing that are all
linked together with the quantum-walks. Therefore, this thesis among others is one
evidence of wide applicability of quantum-walks. Here, I’ll briefly summarize the
work and make comments on further possibility that remains to take care in the fu-
ture.

On Chapter 3 Very few who have seen a quantum computer or let alone have
one could tell that az present, they are good for nothing. But this should not deter us
from seeing the fact that we have made a large progress from where we begin. The
quantum computers does have shown a so called “quantum advantage” for few ar-
tificial problem, but it’s important to ask if what praétical we can do from what we
currently have. Toward this direftion, Quantum simulation holds a great promise
— such as simulating different phase of matter. It is, therefore, becomes important
to investigate efficient ways of quantum simulation. In this chapter, we propose a
qubit efficient scheme to simulate discrete-time quantum walk based protocols. We
explicit seen the implementation of the scheme for the problem of neutrino oscilla-
tions.

The simulation scheme exploits the interaction between the sy§tem and the en-
vironment. This interaction is chosen to be of particular form, therefore, is bit ar-
tificial at this point. Therefore, a possible way to probe such a interaction becomes
viable goal for the future. In the context of neutrino oscillation, there are several di-
rection could be explored. Among other is to incorporate the decoherence effects in-
duced by new physics (e.g., quantum gravity, §tring theory) in neutrino oscillations
in the scheme. It can be done by equipping new interattion between the sy§tem
and the environment. Other direttion which becomes important from computa-
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A prominent example is related to high-
temperature superconduétivity: one of
the important queétions in this context is,
which basic interaétion between the elec-
trons is responsible for the superconduét-
ing behaviour? In other words, which
minimal Hamiltonian describes the phe-
nomenon of high-temperature supercon-
duétivity? To answer this question, a quan-
tum simulator could check the various can-
didate Hamiltonians for relevant phases. A
quantum simulator may not only become
a precious tool for tackling some specific
problems in those fields, but should also
prove a powerful instrument for develop-
ing, testing and benchmarking theoretical
methods.
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tion point of view is to consider colletive neutrino oscillations — in which neutrino
interact with one another.

On Chapter 4 A quantum computer can outperform the classical computer by
running quantum algorithms. Despite the fact that the full-fun&tional quantum
computer are not yet developed, quantum algorithms became a popular avenue to
explore the possibilities of what we can achieve with quantum computers. Search
algorithm is for finding a data point from a unétru¢tured data-base. One of the
early work is that of Grover on data-base search in which a significant speed-up can
be achieved compared to proposed classical algorithms. Since, then, several exten-
sion to this algorithm has been proposed to search for multiple data-points or set of
points. These algorithms fall sort in several ways : 1) They do not provide a homo-
geneous amplification to marked points. 2) They neglet any inherent ordering (or
category) in marked points.

In our work, we proposed a extension to of Grover’s search algorithm for mul-
tiple marked data-points that overcome these problems. The underlying idea of the
algorithm is to introduce extra dimension to data §tructure which is same as adding
extra qubits. These qubits are then used to encode any additional information. The
scheme can also be used to search of dynamical marked points (that can change po-
sition on their position on data-base). The work is complement by giving an explicit
conétruction of quantum circuit for the algorithm and its complexity analysis. A
possible extension of this work is to implement the idea for generic graph §tructures
(as our analysis talks only about the two-dimensional lattices).

On Chapter s Finding a efficient quantum circuits that can perform unitary op-
eration remain a challenging task. In this regard, the concept of circuit complexity is
mathematically accessible way to talk about the complexity of the operation — which
opens up the door to suggest new quantum algorithm or to prove limitations on the
power of quantum computers. Although, the circuit complexity meant to describe
the number of gates require to implement a unitary operation, it is &ill not very well
under$tood the exatt relation between these two quantities.

In this work, we tried to shed light on the relationship between the circuit com-
plexity and circuit depth. To do this, we performed the two computations for a
two-qubit syStem obtained from purification of reduced coin-space. Our results
shows that the two quantities obey the same linear scaling. However, it is &ill un-
known how does these two quantities can be put on the same ground which we aim
to resolve in future.



Flip-Flop Shift Operator

In this appendix, we demonstrate the unitarity of flip-flop shift operator. To unclutter the notation, we will assume

that the position labels x,y runs from

Open-boundary condition The flip-flop shift operator for open boundary con- L2, «N. Furthermore, we define set of
dition is given by sum of interior term points ¢ = {1,2,.N -1} and ¢, =
{2,3,...,N}.
S = 101D D ay+ Dy + INU @ D > |vy -yl + <N =@ > > [x+1,9)(xy]
*yEh ) xegy Y
=)@ ) > = Ly)xyl
XE€p, Y ( )
I
=tlere > [y+ )il +NUlere > ly-1)@l+l) -8 > |r+i)x &l
YEH Vb YE

+ || ® Z |lx = 1) (x| ® I

XEP,
and boundary (exterior) term

Sew = N @ L@ [N)N| + [L){I] @ 7@ [1)(1]

Yol NN © 1+ [ lomiesr P

as Sy = Sy, + Sepe- The form of S}, and S, is chosen so that the shift operator .S
is unitary i.e. S, (S,)" = (5,)'S, = 1. To verify this, consider

So(So)T = (Sint _‘—Sext)(ST +SJr )

int ext
— T il T T
- SintSmt + SimSext + SextSim + SextSext
— T t
- SimSmt + SextSext
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where we used S, ST =0 =SS iTm — follows from the orthonormality of the
position basis. The two terms can easily be found using the explicit form of S, and
S

ext*

N-1
SuShe = 1N @@ > [NOl+ Nt el [l
=1

JEh

N-1
+eN ] @ > |uia| ® T+ =) (=] @ > |x)x| ® 1
XEP; x=1
SueSle = NI @I INYN| +[1)(1] ® I ® [1)(1]
+ =)= ® INYN| &1+ |«) (| ® [1)(1]| ® I

Adding the two terms together, we get S, ST +8, Sh. = S, (S,)" = 1. Asrequired.

Note that this unitarity breaks if we consider the exterior term to be

Sex = DM @ L@ [N)N| + [N @1 @ [1)(1]
+) =@ IN) N[ @ T+ =) (| [1)(1]e]

which gives

SexeSte = 1N ® T® [IN)(N| + 1) (1] ® I ® [1)(1]
+l Nl @ NN T+ |=) =@ [1){l]e].

From which, it is easier to note that S, ST+, ST =8.(5.)" = L.

it~ int ext™ ext
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Details of generators

We provide the explicit form of the fermionic generators y, here. There are

[0 0 1 0
0 0 0 1
Nn=a ® [2 = 1 0 0 0
0 1 0 0
(0 0 -7 O]
0o 0 0 -7
=9 ® 12 = i 0 0 0
0o i 0 o] 0
[0 1 0 0] ’
1 0 0 0
B = ® q = 0 0 0 -1
0 0 -1 0
[0 -7 0 0]
i 0 0 O
hE=B®Aa=10 o0 o0 i
0 0 -7 O]
The y, satisty,
Dot} = 27 - (4)
The explicit forms of the generators 7; for the SU(4) group are then given by,
T3 = {010 220 0 Yar E0000 00 0120 E02750 E0270 T07i i

—iNYs —EN Ve —INsYer —E0YsYe —NDaVsVe)
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