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Abstract

This dissertation details our research on a wide range of ideas from quan-
tum computing – quantum simulation, quantum algorithms, and quantum
complexity which are brought together under the umbrella of quantumwalks.

• Quantum simulation – whose long-term promises are far-reaching –
presents opportunities to solve problems that are not accessible to clas-
sical computers, such as many-body quantum systems with large de-
grees of freedom. Our contribution regarding quantum simulation fo-
cuses on a qubit-efficient scheme to simulate quantum-walk-based sim-
ulations. This involves isolating the dynamics of the internal state of
quantum-walk by probing the effect of the position state as the envi-
ronment. We explicitly demonstrate the scheme for the simulation of
neutrino oscillations and establish a connection between the dynamics
of reduced coin state and neutrino phenomenology, enabling one to fix
the simulation parameters for a given neutrino experiment.

• Quantum computers have the ability to outclass conventional classical
computing by running quantum algorithms. In the last several decades,
quantum algorithms have been proposed for computation problems in
areas such as cryptography, search and optimization, simulation, and
solving large systems of linear equations. Among the early knownquan-
tum algorithms is Grover’s search algorithm, which searches data points
in unstructured data sets. Our contribution regarding the search al-
gorithm focuses on the extension of the algorithm to search for multi-
ple data points, ensuring the homogeneous amplification of probability
amplitude for each, as well as the inherent category associated with the
points. Our algorithm uses additional qubits to encode the data point
category. We extended the scheme to propose a protocol for the search
of dynamic marked points. The quantum algorithm is complemented
by the explicit construction of the quantum circuit along with its com-
plexity.

• Quantum complexity – in particular, circuit complexity – is a mathe-
matical technique to find the cost of implementing a unitary operation.
Vaguely, it meant to quantify the number of gates required to imple-
ment a unitary operation. Although, its exact relation to circuit depth
is still not known. Our contribution regarding circuit complexity is to
establish its relation with circuit depth. In our work, we computed the
two quantities – circuit complexity and circuit depth – for a two-qubit
system obtained from the purification of the reduced coin state of the
quantumwalk. We showed that the two quantities obey the same linear
scaling.

The aforementioned ideas – which are thoroughly documented in this docu-
ment – are explored rigorously – and lead to interesting results.
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“The last pages of a book are already con-
tained in the first pages.”

– Albert Camus

In 2019, IBM introduced the first circuit-
based commercial 20-qubit quantum com-
puter – called IBMQuantum SystemOne.
Its successor, IBMQ System Two, was un-
veiled in 2023 with more than a hundred
qubits.

Analogue quantum simulators are special-
purpose analogue computers.

Overview 1

A quantum computer is not the next generation of supercomputers; it uses spe-
cialized technology, including computer hardware and algorithms that take advan-
tage of quantum mechanics, to solve complex computational problems that are in-
tractable on classical computers or supercomputers. Unfortunately, all the quan-
tum computers that we currently have are good for absolutely nothing. Nevertheless,
decades of research have brought the goal closer than when Paul Benioff first pro-
posed the idea. The significant challenge in the hardware aspect of quantum com-
puting is scaling the system to a large number of qubits. Moreover, it is essential to
make these qubits robust against errors introduced through various environmental
interactions such as thermal vibrations and electromagnetic interference.

There has also been significant progress in theoretical developments, such as
the development of efficient quantum algorithms, quantum simulations for many-
body systems, quantumchemistry, etc. In fact, in certain artificial problems, quan-
tum computers have been shown to surpass classical computers, a point known as
’quantum advantage.’ It is crucial to leverage this quantum advantage formore prac-
tical problems. In this regard, quantum simulators hold long-term promises, partic-
ularly analogue quantum simulators, as they can readily scale to large system sizes.

This thesis focuses on the development of theoretical ideas surrounding quan-
tum algorithms, quantum simulations, and quantum complexity. The exact prob-
lems are stated in the later part of this chapter. In this overview, I will provide a
brief description of these three concepts, followed by the exact problems that will
be explored in the rest of the thesis. Let’s dive in.

1



1. Overview

For instance, to describe the most general
(pure) quantum state for 𝛮 spin-1/2 par-
ticles, we would need to store 2𝛮 coeffi-
cients on our computer — a task that be-
comes practically impossible for𝛮 greater
than around 50. Moreover, predicting the
value of a physical quantity would involve
adding, multiplying, or otherwise combin-
ing all of those coefficients, a process that
would require time scaling exponentially
with𝛮 as well.

1.1 Quantum simulation

In his 1981 lecture ’Simulating physics with computers,’ Feynman emphasized the
complexity of simulating quantum systems using classical computers. The compu-
tational power required to describe even a single quantum system scales exponen-
tially with the number of its constituents. Therefore, simulating quantum systems
on classical computers is deemed impractical, as articulated by Feynman.

Quantum simulation[2] has become a rapidly growing field due to extraordinary
development reporting the demonstration of controlling the quantum states in ex-
perimental setups [3–11]. Apart from the quantum advantages that come from ex-
ploiting the laws of quantum mechanics [12, 13], it allows the study of the system
from a quantum information theory perspective [14–20]. There are two ways to ap-
proach problems via quantum simulation: digital or analog quantum computers.

• A digital quantum computer – designed in analogy to modern classical com-
puters, manipulates the quantum mechanical state using a series of discrete
gate operations and canpossibly performerror correctionon imperfectopera-
tions. So far, only certain aspects of error correction have been demonstrated
for very small numbers of qubits and for a limited set of errors, and to make
progress, most devices operate without any quantum error correction. This
current situation is sometimes referred to as ‘noisy intermediate-scale quan-
tum (NISQ) computing’.

• On the other hand, analog quantum computers are built to simulate the dy-
namics of a particular system or quantum algorithm. These have a significant
advantage in that they can be scaled to large system sizes. There are multi-
ple experimental platforms where analog quantum simulations are realized,
including neutral atoms, superconducting systems, trapped ions, and pho-
tons [3–11].

There are several ways to approach the problem of simulating a quantum sys-
tem. I’ll briefly state the mathematical statement of the quantum simulation prob-
lem (also referred to as the Hamiltonian simulation problem) and provide standard
techniques to approach the problem.

1.1.1 Problem statement

In theHamiltonian simulation problem, given aHamiltonian𝛨 (2𝑛 ×2𝑛 hermitian
matrix acting on 𝑛 qubits), a time 𝑡 andmaximum simulation error 𝜖 is the ideal evo-
lution, and that approximates𝑈 such that ‖𝑈 − 𝑒−𝑖𝛨𝑡‖ ≤ 𝜖, where 𝑒−𝑖𝛨𝑡 is the ideal
evolution and ‖⋅‖ is the spectral norm. A special case of theHamiltonian simulation
problem is the local Hamiltonian simulation problem. This is when𝛨 is a 𝑘-local
Hamiltonian on 𝑛 qubits where𝛨 = ∑𝑚

𝑗=1𝛨𝑗 and𝛨𝑗 acts non-trivially on atmost 𝑘
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1.2. Quantum algorithms

What is quantum speedup? –whenwe say
that a quantumcomputer solves a problem
faster than a classical computer, we typi-
cally mean in terms of computational com-
plexity. In both the classical and quantum
settings, we measure runtime by the num-
ber of elementary operations used by an al-
gorithm. In the case of quantum computa-
tion, this can be measured using the quan-
tum circuit model (See FIG. 1.1), where a
quantum circuit is a sequence of elemen-
tary quantum operations called quantum
gates, each applied to a small number of
qubits.

qubits instead of 𝑛 qubits. The local Hamiltonian simulation problem is important
because mostHamiltonians that occur in nature are 𝑘-local.

1.1.2 Techniques

Here, I will briefly discuss few techniques used for Hamiltonian simulation.

Trotter-Suzuki decompositions Trotter-Suzuki decompositions simulate the sum-
of-terms of a Hamiltonian by simulating each on separately for a small time slice. If
𝛨 = 𝛨1 + 𝛨2, then

𝑈 = 𝑒−𝑖(𝛨1+𝛨2)𝛵 = lim𝑛→∞ (𝑒
−𝑖𝛨1𝛿𝑡𝑒−𝑖𝛨2𝛿𝑡)

𝑛

where 𝑛 is the number of time steps to simulate for and 𝛿𝑡 is the duration of time-
step.. The larger the 𝑛, the more accurate the simulation.

Taylor series By the Taylor series expansion:

𝑒−𝑖𝛨𝑡 =
∞
∑
𝑛=0

(−𝑖𝛨𝑡)𝑛
𝑛! = 𝛪 − 𝑖𝛨𝑡 − 𝛨2𝑡2

2 + 𝑖𝛨3𝑡3
6 + ⋯ (1.1)

The series can be truncated (∑𝛮
𝑛=0(−𝑖𝛨𝑡)𝑛/𝑛!),choosing sufficiently large𝛮. Next,

one decomposes the Hamiltonian𝛨 = ∑𝐿
𝑙=1 𝛼𝑙𝛨𝑙 such that each𝛨𝑙 is unitary, and

so

𝛨𝑛 =
𝐿
∑

𝑙1 ,…,𝑙𝑛=1
𝛼𝑙1 ⋯𝛼𝑙𝑛𝛨𝑙1 ⋯𝛨𝑙𝑛 (1.2)

is also a linear combination of unitaries. Therefore, the evolution of a quantumstate
describe by application of terms𝛨𝑛.

Quantum walk In the quantum walk, a unitary operation whose spectrum is re-
lated to the Hamiltonian is implemented then the Qauntum phase estimation algo-
rithm is used to adjust the eigenvalues. This makes it unnecessary to decompose the
Hamiltonian into sum-of-terms like the Trotter-Suzuki methods.

1.2 Quantum algorithms

Aquantumalgorithm, similar to a classical algorithm, is astep-by-stepprocedure for
solving a problem, and each of the steps can be performed on a quantum computer.
Whatmakes these interesting is that theymight be able to solve someproblems faster
than classical algorithms (discussed below in detail) using features of quantum com-
putation – quantum superposition and quantum entanglement. These quantum
algorithms have a wide range of practical applications, from cryptography, search
and optimization, and quantum system simulation to the resolution of extensive
sets of linear equations. I’ll briefly discuss some of these.
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1. Overview

Figure 1.1: Quantum circuit model is a
generalization of the classical circuitmodel
based on Boolean logical operations. The
horizonal lines are quantum wires, repre-
senting qubits. The implementation order
of operations (quantum gates) runs from
left-to-right followed by a measurement at
the end.

1.2.1 The hidden subgroup problem

Shor’s algorithm for integer factorization is one of the first algorithm in the ‘Quan-
tumAlgorithmZoo’ that provide substantial quantum speedup. In number theory,
integer factorization is the decomposition of a positive integer𝛮 into a product of
integers 𝛮 = 𝑝 × 𝑞. Apart from the mathematical interest, it is of great impor-
tance since the widely used RSA public-key cryptosystem relies on the difficulty of
integer factorization. More specifically, the best classical algorithm has a compu-
tational complexity exp (𝒪 (log𝛮)1/3 (log log𝛮)2/3); while Shor’s quantum algo-

rithm solves this problem in 𝒪 ((log𝛮)3) – a superpolynomial speedup.
Shor’s algorithmfor factoring is an instanceof themathematical problemknown

as the hidden subgroup problem (HSP). In simpler terms, the goal ofHSP is to iden-
tify a hidden pattern of structure (the hidden subgroup) within the function that
exhibits certain periodicity or regularity based on the underlying group 𝐺. Shor’s
algorithm solves the case 𝐺 = ℤ, while for the other few groups, polynomial-time
quantum algorithms are proposed.

1.2.2 Search algorithm

Search problem is one of the basic problems in computer science. Mathematically,
it is formulated as – Suppose we have a function 𝑓 ∶ {0, 1}𝑛 → {0, 1}, find 𝑥 such
that 𝑓(𝑥) = 1. Classically, one needs to evaluate the function for each input —
𝛮 = 2𝑛 times in the worst case. Therefore, the classical computer cannot solve the
problem in fewer than 𝒪(𝛮) evaluations since, on average, one has to check half of
the domain to get a half chance of finding the solution. Remarkably, the quantum
search algorithm proposed by Grover can solve the problem using 𝒪(√𝛮) evalua-
tions in the worst case. Implementation of this algorithm can be done using a num-
ber of gates linear in the number of qubits. The gate complexity of this algorithm
is𝒪(log𝛮) per iteration or𝒪(√𝛮 log𝛮). Grover’s search algorithm generalized to
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1.3. On Geometry of Quantum Computation

These includes – finding the minimum of
an unsorted list of𝛮 integers, determining
graph connectivity, and pattern matching.

More specifically, implementation is effi-
cient if the number of gates required grows
only polynomially with the size of the
problem.

These are chosen large enough in order to
suppress such terms.

the idea known as Amplitude amplification, which gave rise to a family of quantum
algorithms.

1.3 On Geometry of Quantum Computation

As we discussed, the implementation of a unitary operation𝑈 on a quantum com-
puter involves a sequence of gates acting on a small number of qubits. The imple-
mentation is said to be hard or difficult if it requires a large number of gates. Sup-
pose that𝑈 is generated by some time-dependent Hamiltonian𝛨(𝑡) according to
the Schrödinger equation 𝑑𝑈/𝑑𝑡 = −𝑖𝛨𝑈 and with the requirement that at final
time 𝑡𝑓,𝑈(𝑡𝑓) = 𝑈. Then, we can characterize the difficulty of the computation by
imposing a cost 𝐹[𝛨(𝑡)] on the Hamiltonian control 𝛨(𝑡). We can choose a cost
function on𝛨(𝑡) that defines a Riemannian geometry on the space of unitary oper-
ations. Then, finding the optimal control function𝛨(𝑡) for synthesizing a desired
unitary𝑈 then corresponds to findingminimal geodesics of the Riemannian geom-
etry.

Theminimal geodesic distancebetween the identity operation 𝛪 and𝑈 canbe shown
to be equivalent to the number of gates required to synthesize𝑈. To choose a cost
function on the control Hamiltonian𝛨(𝑡), we firstwrite𝛨(𝑡) in terms of the Pauli
operator expansion

𝛨 = ∑
𝑖
ℎ𝑖1𝑖2𝜎

⊗𝑖1𝑖2 +∑
𝑖
ℎ𝑖1𝑖2…𝑖𝑛𝜎

⊗𝑖1𝑖2…𝑖𝑛 (1.3)

assuming the following : (i) In the first sum, 𝜎 ranges over all possible one- and two-
body interactions. (ii) In the second sum, 𝜎 ranges over all other tensor products of
Pauli matrices and the identity. (iii) The coefficients ℎ𝜎 are real. Then, we define a
measure of the cost function for the Hamiltonian as

𝐹(𝛨) = √∑
𝑖
ℎ2𝑖1𝑖2 + 𝑝

2∑
𝑖
ℎ2𝑖1𝑖2…𝑖𝑛 (1.4)

The parameter 𝑝 is a penalty paid for applying non-local interactions (larger than
two-body interaction).

This definition of control cost can be used as distance in space SU(2𝑛) of𝑛-qubit
unitary operators. A curve [𝑈] between the identity operation 𝛪 and the desired
operation𝑈 is a smooth function𝑈 ∶ [0, 𝑡𝑓] → SU(2𝑛), such that𝑈(0) = 𝛪 and
𝑈(𝑡𝑓) = 𝑈. The length of this curve can be defined by the total cost of synthesizing
the Hamiltonian that generates evolution along the curve

𝑑([𝑈]) ≡ ∫
𝑡𝑓

0
𝑑𝑡𝐹[𝛨(𝑡)] (1.5)

Since 𝑑([𝑈]) is invariant with respect to different parameterizations of [𝑈], we can
always rescale the Hamiltonian𝛨(𝑡) such that 𝐹[𝛨(𝑡)] = 1 and the desired unitary
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1. Overview

Figure 1.2: Illustration of the unitary
manifold (gray disk) featuring a geodesic
trajectory (depicted in black) from the iden-
tity to a specific target unitary𝑈. The blue
straight lines symbolize the construction of
a circuit utilizing elementary gates 𝑔𝑖, with
the final unitary expressed as 𝑈 = 𝑔3𝑔2𝑔1.
The geodesic path provides a smooth ap-
proximation to the circuit by adjusting a
control velocity 𝑉(𝑠), analogous to an in-
finitesimal elementary gate. Here, the pa-
rameter 𝑠 serves as a parameterization for
the curve.

is generated at time 𝑡𝑓 = 𝑑([𝑈]). Workingwith suchnormalized curves, the distance
𝑑(𝛪,𝑈) between 𝛪 and 𝑈 is defined to be the minimum of 𝑑([𝑈]) over all curves
[𝑈] connecting 𝛪 and 𝑈. The cost function or minimum distance is referred to as
Nielsen’s Complexity (or simply circuit complexity).

If the distance 𝑑(𝛪,𝑈) scales polynomially with 𝑛 for some family of unitary oper-
ators, then it is possible to find a polynomial-sized quantum circuit for that family
of unitary operators. Therefore, by recasting the problem of finding the quantum
circuits as a geometric problem, the circuit complexity opens up the possibility of
using the techniques of Riemannian geometry to suggest new quantum algorithms
or to prove the computational limitations of quantum computers.

1.4 The Problem

In this section, I will present three questions that reflect three seemingly unrelated
concerns that, nevertheless, are answered using a common tool.

1. Considering the recent theoretical and experimental results on quantum sim-
ulation, it appears that the practical quantum advantage might be realized in
the near future. However, there are still some problems to be overcome. Ex-
perimentally, one demands improved controllability and scalability as most
systems (besides optical lattices) still have to handle a large array of qubits.
Theoretically, the investigation on control and decoherence becomes impor-
tant. The optimal requirement for the realization of physical systems, a po-
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1.5. MyThesis

The amount of it, to be sure, is merely a
scream, but sometimes a scream is better
than a thesis.

– RalphWaldo Emerson

tential limitation of various schemes, and new applications of quantum sim-
ulation through existing ones should be explored.

2. In part of the quantum algorithm, our consideration is on Grover’s search
algorithm. The algorithm can be extended to the cases where one searches
for multiple marked points- in other words, the function 𝑓(𝑥) = 1 can have
multiple solutions. However, such algorithms do not provide homogeneous
amplitude amplification to eachmarkedpoint. On adifferent line of thought,
we can also consider further structured data under consideration. One such
consideration could be that the points in the dataset have additional cate-
gories. Surprisingly, the solution to these twouncorrelatedproblems requires
the same framework as we will discuss in later sections.

3. The efficient use of quantum computers requires the construction of opti-
mal quantum circuits for solving a problem. As we discussed in §1.3, circuit
complexity is a goodmeasure of the difficulty of implementing the operation
𝑈 on a quantum computer. It can be used to put a lower bound on the num-
ber of one- and two-qubit quantum gates required to exactly synthesize 𝑈.
However, its exact relation with circuit depth is still not clear. A better un-
derstanding of a possible link between circuit depth and circuit complexity
could provide an analytical handle on the practical circuit build using quan-
tum gates.

1.5 MyThesis

The goal of this dissertation is to improve the state of affairs mentioned above. To
that end, the dissertation demonstrates three claims :

1. Quantum-walk-based simulations can be made qubit efficient by exploiting
the system-environment interactions.

2. Homogeneous amplitude amplification, as well as categorical search, can be
made for marked points in the dataset by considering extendedHilbert space
dimension.

3. Circuit complexity and circuit depth obey the same scaling law.

We elaborate on each claim in turn –

1.5.1 Claim 1

TheHilbert space of a quantumwalk consists of a position space— usually describ-
ing the structure of a lattice or graph on which a particle moves — and an internal
space — describing the internal state of the particle, such as spin. Therefore, the
quantum simulation based on quantumwalk requires a large number of qubits that
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1. Overview

grow linearly with the lattice size, whichmakes experimental implementation hard.
We can bypass the requirement of lattice space by considering a system that consists
of only the internal state interacting with an environment. The interaction between
the system and environment is made such that the overall state evolution of the sys-
tem is the same as that of a complete quantum walk. We will explicitly show the
form of this system-environment interaction and demonstrate the scheme for the
neutrino oscillation simulation.

1.5.2 Claim 2

In a quantum-walk-based search algorithm, the dataset is considered as a graph that
plays the role of position space of the walk. Therefore, the marked points are repre-
sented as marked nodes in this graph. The amplitude amplification can be thought
of as the localization of wave function at the position of the marked node. In the
case of multiple nodes, the wave function localizes at multiple positions, and local-
ization at one position, in general, affects the localization at other positions. This
causes the amplitude amplification to be inhomogeneous — in the sense that one
point may amplify to high amplitude while the other may not amplify at all. This
problem could be resolved if we consider the multi-layered graph structure for the
position space of thewalk. In this case, the localization occurs in different layers and,
therefore, occurs independently of each other, thereby preserving the homogeneity
of amplification.

It is further possible to utilize this multi-layered structure to search for categor-
ical datasets. This stems from the fact that these layers can be given labels for the
category so that the marked point is a node of a particular layer. The framework
of categorical data structure can also be used to consider the search for a dynamic
marked node — in which the marked node can change its position in time. In this
case, one considers themarked node to bemoving from one layer to another. There-
fore, the layers play the role of time stamp in tracking the particle or node.

1.5.3 Claim 3

To understand the relation between circuit complexity and circuit depth, we con-
sider a two-way calculation for a two-qubit system evolving in discrete-time steps:
1) Explicit calculation of circuit complexity. 2) Calculation of circuit depth by ex-
plicit construction of the quantum circuit. Our results show that the twoquantities
obey similar scaling with respect to time. Although this does not provide the exact
relation between the two quantities, it presents strong evidence of possible relation
between the two quantities.

1.6 Organization

Chapter 2provides the technical backgroundonquantum-walk, particularly discrete-
time quantumwalks, whichwill be used in laterchapters. The §2.1 lays down the for-
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1.6. Organization

mulation of the discrete-time quantum walk and illustrates its connection with the
Dirac Hamiltonian. Later, in §2.2, the formulation is generalized to more generic
graphs. We end with providing a brief survey on the experimental implementation
of quantum-walk in §2.3.

The rest of the thesis is dedicated to three problems described in §1.4. Chapter 3
begins with describing the phenomena of neutrino oscillation (§3.1). This follows
up in §3.2 with the construction of system-environment interaction that probes the
position-space effects and explicitly illustrates the case of Hamiltonian dynamics of
Dirac particle. §3.3 illustrate the simulation scheme for the neutrino oscillation for
two- and three-flavor cases, followed by the presentation of results in §3.4.

Chapter 4beginswithproviding the formulationofquantum-walk searchalgorithm
(§4.1)with explicit case of two-dimensional lattice. It thenmoves on tomulti-layered
construction in §4.2, providing the numerical results as well as scaling with lattice
size. In §4.3, we talk about the quantum tracking problem and our multi-layered
approach to solving it. The chapter is concluded in §4.4 by providing the explicit
construction of quantum circuit and its complexity.

Chapter 5 starts with the formulation of the definition of circuit-complexity for the
geometry of 𝑛-qubit system evolving under operation in SU(2𝑛). We, then, con-
sider the two-qubit system obtained from the purification of the internal state of
quantum-walk and set the target unitary operator (§5.2). The analytic as well as nu-
merical calculation of circuit complexity and circuit depth is done in §5.3 and §5.4,
respectively.

Finally, the dissertation concludes withchapter 6, which summarizes the contri-
butions and raises several additional research questions for future investigations.
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Figure 2.1: Random walk in two di-
mensions with 25 thousand steps[1].

See ref. [21] for a comprehensive review on
a continuous-time quantum walk.

Quantum walk 2

Consider a particle that moves either to the left or right depending on the result of
a coin toss. This process is an example of a random walk or drunkard’s walk – a
random process that describes a path that consists of a succession of random steps
on some mathematical space. Despite its simple structure, randomwalks have wide
applications from physical sciences – physics, chemistry, materials science, and bi-
ology to economics and sociology. A quantum analog of the random walk can be
formulated by allowing superposition and unitary operations (particle movement
and coin toss). Quantum walk [21–24] is a widely successful framework for mod-
eling controlled dynamics in quantum systems [25–30], and for building quantum
algorithms [24, 31–33]. There are two broad categories of quantum walks - discrete-
time quantum walk (DTQW) and continuous-time quantum walk (CTQW).

• In a discrete-time quantum walk, a quantum particle or a qubit is allowed
tomove in discrete steps on a lattice governed by unitary evolution operators.
At eachstep, the particle state undergoes a unitary transformation, which can
be expressed as a product of two operators, namely the coin and the shift op-
erators. The coin operator acts as a rotation in the qubit space, and the shift
operator translates the particle to another vertex on the lattice [21, 34].

• In the case of continuous-time quantum walk, the quantum particle is de-
scribed by a quantumstate that evolves over time according to a time-varying
unitaryoperator. Asopposed todiscrete-timequantumwalk, the continuous-
time quantum walk evolution is continuous in time [35].

Inwhat follows, I will discuss discrete-time quantumwalk inmore detail as it would
play a central role in the rest of the thesis.
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2. Quantumwalk

To start with, I am assuming the position
space to be one-dimensional. Later in
this chapter, I’ll talk about extensions to
generic graphs.

2.1 Discrete-time quantum walk

Thediscrete-time quantumwalk on a line is defined on aHilbert spaceℋ = ℋ𝑐⊗ℋ𝑝
whereℋ𝑐 is coin Hilbert space andℋ𝑝 is the position Hilbert space. For a walk in
one dimension,ℋ𝑐 is spanned by the basis set |↑⟩ and |↓⟩ representing the internal
degree of the walker, andℋ𝑝 is spanned by the basis state of the position |𝑥⟩ where
𝑥 ∈ ℤ on which the walker evolves. At any time 𝑡, the state can be represented by

|Ψ(𝑡)⟩ = |↑⟩ ⊗ |Ψ↑(𝑡)⟩ + |↓⟩ ⊗ |Ψ↓(𝑡)⟩ (2.1)

= ∑
𝑥
[𝜓

↑
𝑥,𝑡
𝜓↓
𝑥,𝑡
] . (2.2)

Each step of the discrete-time quantum walk is defined by a unitary quantum coin
operation 𝐶 on the internal degrees of freedom of the walker, followed by a condi-
tional position shift operation 𝑆, which acts on the configuration of the walker and
position space. Therefore, the state at time (𝑡 + 𝜏) where 𝜏 is the time required to
implement one step of the walk will be

|Ψ(𝑡 + 𝜏)⟩ = 𝑆(𝐶 ⊗ 𝛪)|Ψ(𝑡)⟩ = 𝑊|Ψ(𝑡)⟩. (2.3)

The general form of coin operator𝐶, given by

𝐶 = 𝐶(𝜉, 𝜃, 𝜑, 𝛿) = 𝑒𝑖𝜉𝑒−𝑖𝜃𝜎𝑥𝑒−𝑖𝜑𝜎𝑦𝑒−𝑖𝛿𝜎𝑧

= 𝑒𝑖𝜉 (𝑒
−𝑖𝛿(𝑐𝜃𝑐𝜑 − 𝑖𝑠𝜃𝑠𝜑) −𝑒𝑖𝛿(𝑐𝜃𝑠𝜑 + 𝑖𝑠𝜃𝑐𝜑)
𝑒−𝑖𝛿(𝑐𝜃𝑠𝜑 − 𝑖𝑠𝜃𝑐𝜑) 𝑒𝑖𝛿(𝑐𝜃𝑐𝜑 + 𝑖𝑠𝜃𝑠𝜑)

)

= 𝑒𝑖𝜉 ( 𝐹𝜃,𝜑,𝛿 𝐺𝜃,𝜑,𝛿
−𝐺∗

𝜃,𝜑,𝛿 𝐹∗𝜃,𝜑,𝛿
)

(2.4)

where 𝑐 = cos, 𝑠 = sin, 𝜉 is global phase angle, 2𝜃, 2𝜑, 2𝛿 are the angles of rotations
along 𝑥, 𝑦 and 𝑧 axes respectively with 𝜃, 𝜑, 𝛿 ∈ [0, 2𝜋], and 𝜎𝑖 is the 𝑖th component
of the Pauli spin matrices {𝜎𝑥, 𝜎𝑦, 𝜎𝑧}, which are generators of SU(2) group. The po-
sition shift operator 𝑆 on the lattice with spacing 𝑎 is of the form

𝑆 = |↓⟩⟨↓| ⊗ 𝛵+ + |↑⟩⟨↑| ⊗ 𝛵− = [𝛵+ 0
0 𝛵−

] (2.5)

where

𝛵± = ∑
𝑥∈ℤ

|𝑥 ± 𝑎⟩⟨𝑥|

are translation operators. In momentum basis, these take a diagonal form

𝛵± = 𝑒∓𝑖𝑝𝑎 = ∑
𝑘
𝑒∓𝑖𝑘𝑎|𝑘⟩⟨𝑘|

12



2.1. Discrete-time quantum walk
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Figure 2.2: Left: Probability distribution
𝛲(𝑥, 𝑡)with 𝑡 ∈ [0, 25]Right: Probability
distribution𝛲(𝑥, 𝑡0 = 100) of a particle un-
dergoing discrete-time quantumwalkwith
coin angle 𝜃 = 𝜋/12. Figure also shows
the probability distribution of the walker
in classical setting.

Quantum walk algorithms take advantage
of one of the two ways to outperform ran-
dom walks — 1) faster hitting time (the
time take to spread from a source vertex to
a target vertex). 2) faster mixing (the time
taken to spread out over all vertices after
starting from one source vertex).

In ref. [30] discrete-time quantum walks
are shown to provide a versatile platform
to probe topological phases. This is further
demonstrated in various platforms such as
with cold atoms [37, 38].

with |𝑘⟩ being momentum eigenstate, given by

|𝑘⟩ = 1
√2𝛮 + 1

𝛮
∑
𝑥=−𝛮

𝑒−𝑖𝑘𝑥|𝑥⟩ (2.6)

where 𝑘 is eigenvalue which can take values 2𝜋𝑛/(2𝛮 + 1), 𝑛 ∈ ℤ.

2.1.1 Illustration

To illustrate, what does the probability distribution look like for a particle undergo-
ing a discrete-time quantum walk? Consider the initial state of the particle

|Ψ(0)⟩ = (|↑⟩ + |↓⟩√2
) ⊗ |0⟩

with the coin operator defined as in EQ. (2.7). FIG. 2.2 shows the probability distri-
bution defined as

𝛲(𝑥, 𝑡) = |𝜓↑
𝑥,𝑡|2 + |𝜓↓

𝑥,𝑡|2 .
It is shown that the standard deviation of the probability distribution grows linearly
∼ 𝑡 in contrast to the classical random walk where it grows ∼ √𝑡. This feature is
utilized in quantum algorithms such as search algorithms based on quantum walks.

2.1.2 Connection with Dirac Hamiltonian

The discrete-time quantum walk can be used to simulate various physical systems.
This involves setting up the unitary evolution that has an effective Hamiltonian cor-
responding to the Hamiltonian of the physical system in question. For the purpose
of this thesis, we consider the simulation of Dirac Hamiltonian. In ref. [36], it is
shown that for the coin operator

𝛣 ≡ 𝐶(0, 𝜃, 0, 3𝜋/2)
= cos 𝜃|↑⟩⟨↑| + sin 𝜃 (|↑⟩⟨↓| − |↓⟩⟨↑|) + cos 𝜃|↓⟩⟨↓| (2.7)
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2. Quantumwalk

The experimental realization of a Dirac cel-
lular automaton in trapped-ion quantum
processor is done in ref. [39] inwhich space
of walker positions and internal state is
mapped to multi-qubit states.

the effective Hamiltonian defined as 𝑊 = 𝑒−𝑖𝛨𝜏 takes the form of a one spatial
dimensional Dirac Hamiltonian for small 𝑘 and 𝜃 with parameter correspondence
given by

𝑎
𝜏 = 1 & 𝜃

𝜏 = 𝑚. (2.8)

The eigenvector of𝛨 corresponding to the positive eigenvalue

𝛦 = 1
𝜏 arccos(cos 𝜃 cos 𝑘̃) (2.9)

where 𝑘̃ = 𝑘𝑎 and the corresponding eigenstates are given by

|𝜈⟩ = [𝑓(𝜃, 𝑘) 𝑔(𝜃, 𝑘)]𝛵 ⊗ |𝑘⟩ (2.10)

where

𝑓(𝜃, 𝑘) = sin 𝜃𝑒−𝑖𝑘

√sin2 𝜃 + [cos 𝜃 sin 𝑘 − (1 − cos2 𝜃 cos2 𝑘)1/2]
2

𝑔(𝜃, 𝑘) =
𝑖 (cos 𝜃 sin 𝑘 − (1 − cos2 𝜃 cos2 𝑘)1/2)

√sin2 𝜃 + [cos 𝜃 sin 𝑘 − (1 − cos2 𝜃 cos2 𝑘)1/2]
2
.

(2.11)

This is particularly interesting from quantum simulation point of view as some of
the fundamental particles such as electron, neutrino, etc. obeys the Dirac equation.

2.2 Extension to generic graph

Let 𝐺 = (𝑉, 𝛦) be a finite 𝑑-regular graph, where 𝑉 is a set of vertices (nodes), 𝛦 is
the set of edges connecting the nodes, and𝛮 = |𝑉| is the number of vertices. The
labels of the vertices are 0 to𝛮 − 1, and the label of the edges are 0 to 𝑑 − 1. The
position spaceℋ𝑝 is spanned by {|𝑣⟩ ∶ 0 ≤ 𝑣 ≤ 𝛮 − 1}, while coin space is spanned
by {|𝑎⟩ ∶ 0 ≤ 𝑎 ≤ 𝑑 − 1} represents the internal states associated with each node.

For example, consider a 2Dsquare latticewhichhave fourdirectionofmotion at each
lattice point. One of the scheme is to consider four dimensional coin operator with
the basis state as |0⟩, |1⟩, |2⟩, and |3⟩ corresponding to each direction of motion.
The shift operator can be written as

𝑆 = ∑
𝑥,𝑦

[|0⟩⟨0| ⊗ |𝑥 − 1, 𝑧 − 1⟩⟨𝑥, 𝑧| + |1⟩⟨1| ⊗ |𝑥 − 1, 𝑧 + 1⟩⟨𝑥, 𝑧|

+|2⟩⟨2| ⊗ |𝑥 + 1, 𝑧 − 1⟩⟨𝑥, 𝑧| + |3⟩⟨3| ⊗ |𝑥 + 1, 𝑧 + 1⟩⟨𝑥, 𝑧|] .
(2.12)
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2.3. On experimental implementation & applications

Figure 2.3: A 2D square lattice.

The coin operator, in general, can be the group element of SU(4). A choice could
be

𝐶 = 1
2 [

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

] (2.13)

known as the Grover diffusion operator. This plays an important role in quantum-
walk based search algorithm – we will come back to this point in chapter 4.

2.3 On experimental implementation & applications

Experimental implementations of discrete-time quantum walks have been realized
on various platforms (see ref. [40] for review). To cite but few, these platforms con-
sists of nuclear magnetic resonances [41, 42], trapped ions [43, 44], atoms [45], and
a number of photonic platforms [46–51].

As we learned, the discrete-time quantum walk have connection to the Dirac equa-
tion. In past developments, variants of discrete-time quantumwalk have been used
to simulateDirac equation and its associated dynamics [36, 52–54]which are also ex-
perimentally implemented in both analog and digital quantum simulators [39, 55].
These experimental implementation allows the laboratory realization and investiga-
tion of a variety of key fundamental phenomena associated with Dirac particle dy-
namics like Zitterbewegung, simultaneous position and spin oscillations [55–58].
Schemes for quantum simulations of Dirac equation in curved space-time, discrete
gauge theories, free quantum field theory, collective neutrino oscillations have been
also reported in literature [53, 59–63]. Apart from these, there are other quantum
simulation proposed based on discrete-time quantum walks in number of topics
such as topological effects [38, 64, 65], recurrence [66], and percolation [67].
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Figure 3.1: Elementary particles of
the StandardModel 1

Simulating neutrino oscillation 3

A neutrino is a fermion (an elementary particle with a spin of 1/2) that interacts
only via weak interaction and gravity. Weak interactions create neutrino in one of
three leptonic flavors: electron neutrino 𝜈𝑒, muon neutrino 𝜈𝜇, and tau neutrino 𝜈𝜏.
Neutrino oscillations is a quantum mechanical phenomenon in which a neutrino
created with a specific lepton flavor can later be measured to have a different lepton
flavor.

Neutrino oscillations have given rise to vibrant phenomena involving super-
novae, reactor neutrinos, the early universe, or atmospheric neutrinos, and the so-
lution to the solar neutrino problem [68–74]. A framework to simulate neutrino
oscillation with discrete-time quantum walks has been proposed in previous litera-
ture [75, 76]. It uses the fact that certain discrete-time quantum walks can be used
to simulate the Dirac equation – obeyed by neutrinos. I loosely mentioned this in
§2.1.2. Nevertheless, the readers are advised to look at the cited references.

In this chapter, I will approach the problem from the open quantum system
perspective by considering the walker’s evolution in the reduced coin space, thereby
effectively treating the position space as an environment. We consider the reduced
dynamics of the coin state obtained by tracing over the position space degrees of
freedom of a quantumwalker. TheKraus operators we have obtained exhibit a tem-
poral recurrence relation, which allows one to calculate them systematically at any
given time. These Kraus operators are shown to describe the dynamics of the Dirac
particle. We extended this formalism to describe the dynamics of more than one
Dirac particle, thereby establishing a connection between the dynamics of reduced
coin state and neutrino phenomenology. The Kraus operators form presented in
this work can be used as a guiding framework to model dynamics in other quan-
tum systems where quantum walks, and Dirac equations are used for simulating
and modeling the dynamics.
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3. Simulating neutrino oscillation

3.1 Neutrino Oscillations

In the theoryof electroweak interactiondevelopedbyGlashow,Weinberg, andSalam,
lepton flavor is conserved, and neutrinos are massless. Therefore, a neutrino of a
given flavor created in charged current weak interactions will remain in the same
flavor state. However, various experimental observations have shown that the fla-
vor of neutrino changes as it propagates in space-time [77–79]. This disconnection
between the theoretical expectation and experimental observation is resolved by a
scheme that relies on mixing the three neutrino mass and flavor states. According
to this, each of the three neutrino flavor states is a mixture of the three mass eigen-
states. As neutrinos move in space-time, each mass eigenstate acquires a different
phase. Hence, a definite flavor state evolves into a mixture of three flavors, leading
to flavor oscillation called neutrino oscillation [80–82].

Defining flavor eigenstates |𝜈𝛼⟩ (𝛼 = 𝑒, 𝜇, 𝜏) and mass eigenstates |𝜈𝑖⟩ (𝑖 = 1, 2, 3),
then the flavor and mass eigenstates are related by a unitary transformation written
as

|𝜈𝛼⟩ = ∑
𝑖
𝑈𝛼𝑖|𝜈𝑖⟩ (3.1)

where𝑈𝛼𝑖 ismixingmatrix knownas thePontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [83] given by

𝑈 = [
𝑈𝑒1 𝑈𝑒2 𝑈𝑒3
𝑈𝜇1 𝑈𝜇2 𝑈𝜇3
𝑈𝜏1 𝑈𝜏2 𝑈𝜏3

]

= [
1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

] [
𝑐13 0 𝑠13𝑒−𝑖𝛿
0 1 0

−𝑠13𝑒𝑖𝛿 0 𝑐13
]

× [
𝑐12 𝑠12 0
−𝑠12 𝑐12 0
0 0 1

] [
𝑒𝑖𝛼1/2 0 0
0 𝑒𝑖𝛼2/2 0
0 0 1

]

≡ 𝑈3𝑈2𝑈1𝑈0

(3.2)

where 𝑐𝑖𝑗 ≡ cos 𝜙𝑖𝑗, and 𝑠𝑖𝑗 ≡ sin 𝜙𝑖𝑗 with 𝜙𝑖𝑗 being the mixing angle. The phase
factor 𝛼1, 𝛼2 are physically meaningful only if neutrinos areMajorana particles. The
state |𝜈𝑖⟩ is the mass eigenstate of the free Dirac Hamiltonian (in natural units)

𝛨𝑖 = 𝜉⃗ ⋅ 𝑝⃗𝑖 + 𝛽𝑚𝑖 (3.3)

where𝑚𝑖 is the mass, 𝑝⃗𝑖 is momentum operator. The propagation of eigenstate |𝜈𝑖⟩
can be described by plane wave solutions of the form

|𝜈𝑖(𝑡)⟩ = 𝑒−𝑖(𝛦𝑖𝑡−𝑘⃗𝑖 ⋅𝑥⃗)|𝜈𝑖(0)⟩ (3.4)
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3.2. Reduced dynamics of a coin
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Figure 3.2: Two flavor neutrino oscil-
lation. The blue curve shows the proba-
bility of the original neutrino retaining its
identity. The green curve shows the prob-
ability of conversion to the other neutrino.
Themaximum probability of conversion is
equal to sin2 𝜙. The frequency of the oscil-
lation is controlled byΔ𝑚2.

In atmospheric neutrino oscillations,
the electron plays almost no role; hence
EQ. (3.9) is appropriate for flavor tran-
sition [84]. It is also appropriate for
the solar case of 𝜈𝑒 ↔ 𝜈𝛸 where 𝜈𝛸 is
the superposition of 𝜈𝜇 and 𝜈𝜏. These
approximations are possible since the
mixing angle 𝜃13 is very small and because
two of the three mass eigenstates are very
close in mass compared to the third [85].

where 𝑘⃗𝑖 is the three dimensional momentum, with 𝛦𝑖 = √|𝑘⃗𝑖|2 + 𝑚2
𝑖 being the

positive energy of mass-eigenstate.

Suppose that at time 𝑡 = 0 a flavor neutrino |𝜈𝛼⟩ is produced, then at time 𝑡 the
neutrino state given by

|𝜈𝛼(𝑡)⟩ = ∑
𝑖
𝑈𝛼𝑖|𝜈𝑖(𝑡)⟩ = ∑

𝑖
𝑈𝛼𝑖𝑒−𝑖𝛦𝑖𝑡|𝜈𝑖(0)⟩. (3.5)

Therefore, the probability of transition 𝜈𝛼 → 𝜈𝛽 after a time 𝑡 is given by

𝛲(𝜈𝛼 → 𝜈𝛽; 𝑡) = ∣∑
𝑗
𝑈∗
𝛼𝑗𝑈𝛽𝑗𝑒−𝑖𝛦𝑗𝑡∣ . (3.6)

To illustrate EQ. (3.6), let us consider the simpler case with only two neutrino
state. In this case, the mixing matrix𝑈 can be written as

𝑈 = [ cos 𝜙 sin 𝜙
− sin 𝜙 cos 𝜙] (3.7)

where 𝜙 is the mixing angle. In ultra-relativistic limit, |𝑘⃗𝑖| ≫ 𝑚𝑖 so that we can
approximate energy as

𝛦𝑖 = √|𝑘⃗𝑖|2 + 𝑚2
𝑖 ≃ |𝑘⃗𝑖| +

𝑚2
𝑖

2|𝑘⃗𝑖|
≈ 𝛦 + 𝑚2

𝑖
2𝛦 (3.8)

where 𝛦 ≈ |𝑘⃗𝑖| for all 𝑖. The transition probability from flavor states |𝜈𝛼⟩ to |𝜈𝛽⟩ in
ultra-relativistic limit then, given by

𝛲(𝜈𝛼 → 𝜈𝛽; 𝑡) = sin2(2𝜙) sin2 (Δ𝑚
2𝐿

4𝛦 ) (3.9)

with Δ𝑚2 = 𝑚2
2 − 𝑚2

1 and 𝐿 ≈ 𝑡 is the distance traveled by the neutrinos from the
production to the detection point.

3.2 Reduced dynamics of a coin

In this section, we will consider the reduced dynamics of a coin in a DTQW, which
previously has been studied in the context of non-markovian characteristics of the
dynamics [86]. Although, in contrast to previous work, we will derive a temporal
recurrence relation for Kraus operator which allows one to find these at any time for
a generic initial quantum state.

Consider the initial state of the walker to be

|Ψ(0)⟩ = |𝜒⟩ ⊗ |𝜓𝑥⟩. (3.10)
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3. Simulating neutrino oscillation

To verify that 𝛫̃𝑥(𝑡) obeys the complete-
ness :

∑
𝑥
𝛫̃†
𝑥 (𝑡)𝛫̃𝑥(𝑡)

= ∑
𝑥
⟨𝜓𝑥|(𝑊𝑡)†|𝑥⟩⟨𝑥|𝑊𝑡|𝜓𝑥⟩

= ⟨𝜓𝑥|(𝑊𝑡)†𝑊𝑡|𝜓𝑥⟩
= 𝛪

as required.

consisting of an internal spin state

|𝜒⟩ ∈ ℋ𝑐 = {𝑎↑| ↑⟩ + 𝑎↓| ↓⟩ ∶ 𝑎↑/↓ ∈ ℂ} (3.11)

and a position state

|𝜓𝑥⟩ ∈ ℋ𝑝 = {∑
𝑥∈ℤ

𝑐𝑥|𝑥⟩ ∶ ∑
𝑥∈ℤ

|𝑐𝑥|2 < ∞} . (3.12)

After 𝑡 steps, this becomes

|Ψ(𝑡)⟩ = 𝑊𝑡|Ψ(0)⟩ = 𝑊𝑡 (|𝜒⟩ ⊗ |𝜓𝑥⟩) . (3.13)

The density matrix representation of the above state is given by

𝜌(𝑡) = |Ψ(𝑡)⟩⟨Ψ(𝑡)| (3.14)
= 𝑊𝑡|Ψ(0)⟩⟨Ψ(0)|(𝑊†)𝑡. (3.15)

Now, we can trace over the position space to get

𝜌𝑐(𝑡) =
𝑡
∑
𝑥=−𝑡

⟨𝑥|𝑊𝑡|Ψ(0)⟩⟨Ψ(0)|(𝑊†)𝑡|𝑥⟩

=
𝑡
∑
𝑥=−𝑡

⟨𝑥|𝑊𝑡|𝜓𝑥⟩|𝜒⟩⟨𝜒|⟨𝜓𝑥|(𝑊†)𝑡|𝑥⟩

=
𝑡
∑
𝑥=−𝑡

𝛫̃𝑥(𝑡)𝜌𝑐(0)𝛫̃†
𝑥 (𝑡) (3.16)

where
𝛫̃𝑥(𝑡) ≡ ⟨𝑥|𝑊𝑡|𝜓𝑥⟩ (3.17)

are called Kraus operators that describes the density operator evolution in open
quantum systems. In general, these operators {𝛫𝑛 ∶ 1 ≤ 𝑛 ≤ 𝛮} obeys the com-
pleteness property

∑
𝑛
𝛫†
𝑛𝛫𝑛 = 𝛪 . (3.18)

3.2.1 Temporal recurrence relation

For simplicity, let’s take the initial state to be |𝜓𝑥⟩ = |0⟩ so that

𝛫𝑥(𝑡) = ⟨𝑥|𝑊𝑡|0⟩. (3.19)
To make further progress, we break down the evolution operator 𝑊 in shift and
coin operator as

𝑊 = 𝑆(𝐶 ⊗ 𝛪)
= [| ↑⟩⟨↑ | ⊗ 𝛵− + | ↓⟩⟨↓ | ⊗ 𝛵+] [𝐶 ⊗ 1]
= | ↑⟩⟨↑ |𝐶 ⊗ 𝛵− + | ↓⟩⟨↓ |𝐶 ⊗ 𝛵+
= 𝐶↑ ⊗ 𝛵− + 𝐶↓ ⊗ 𝛵+.
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3.2. Reduced dynamics of a coin

where

𝐶↑ ≡ | ↑⟩⟨↑ |𝐶 = 𝑒𝑖𝜉 (𝐹𝜃,𝜑,𝛿 𝐺𝜃,𝜑,𝛿
0 0 )

𝐶↓ ≡ | ↓⟩⟨↓ |𝐶 = 𝑒𝑖𝜉 ( 0 0
−𝐺∗

𝜃,𝜑,𝛿 𝐹∗𝜃,𝜑,𝛿
) .

(3.20)

With this, consider Kraus operator at 𝑡 + 1

𝛫𝑥(𝑡 + 1) = ⟨𝑥|𝑊𝑡+1|0⟩ = ⟨𝑥|𝑊𝑊𝑡|0⟩
= ∑

𝑥′
⟨𝑥|𝑊|𝑥′⟩⟨𝑥′|𝑊𝑡|0⟩

= ∑
𝑥′
⟨𝑥|𝑊|𝑥′⟩𝛫𝑥′(𝑡). (3.21)

Now consider the first term in the expression

⟨𝑥|𝑊|𝑥′⟩ = 𝐶↑⟨𝑥|𝛵−|𝑥′⟩ + 𝐶↓⟨𝑥|𝛵+|𝑥′⟩
= 𝐶↑⟨𝑥|𝑥′ − 𝑎⟩ + 𝐶↓⟨𝑥|𝑥′ + 1⟩
= 𝐶↑𝛿𝑥,𝑥′−𝑎 + 𝐶↓𝛿𝑥,𝑥′+𝑎

putting this into EQ. (3.21), we get

𝛫𝑥(𝑡 + 1) = ∑
𝑥′
[𝐶↑𝛿𝑥,𝑥′−𝑎 + 𝐶↓𝛿𝑥,𝑥′+𝑎]𝛫𝑥′(𝑡)

= 𝐶↑𝛫𝑥+𝑎(𝑡) + 𝐶↓𝛫𝑥−𝑎(𝑡).

Therefore, we get a recurrence relation for the Kraus operator given by

𝛫𝑥(𝑡 + 1) = 𝐶↑𝛫𝑥+𝑎(𝑡) + 𝐶↓𝛫𝑥−𝑎(𝑡). (3.22)

The initial Kraus operator at 𝑡 = 0 given by, using the definition given in EQ. (3.19)

𝛫𝑥(0) = ⟨𝑥|0⟩ = 𝛿𝑥,0.

If we start with initial position state to be |𝑥′⟩ then Kraus operators 𝛫𝑥𝑥′(𝑡) are re-
lated to𝛫𝑥(𝑡) by

𝛫𝑥𝑥′(𝑡) ≡ ⟨𝑥|𝑊𝑡|𝑥′⟩ = 𝛫𝑥−𝑥′(𝑡) (3.23)

and therefore for a generic extended initial position state |𝜓𝑥⟩ = ∑𝑥′ 𝑐𝑥′|𝑥′⟩, we have

𝛫̃𝑥(𝑡) = ∑
𝑥′
𝑐𝑥′𝛫𝑥𝑥′(𝑡) = ∑

𝑥′
𝑐𝑥′𝛫𝑥−𝑥′(𝑡). (3.24)

Hence, for general position state |𝜓𝑥⟩, the Kraus operators are simply a linear com-
bination of Kraus operators for initial state |0⟩.
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3.2.2 Example : Dirac Hamiltonian

To illustrate EQ. (3.22), we derive the expression for the Kraus operator correspond-
ing to coin operator in EQ. (2.7) which describes the Dirac Hamiltonian for initial
position state |0⟩. The operators𝐶↑/↓ for the coin operator EQ. (2.7) have the form

𝛣↑ ≡ | ↑⟩⟨↑ |𝛣 = (cos 𝜃 sin 𝜃
0 0 )

𝛣↓ ≡ | ↓⟩⟨↓ |𝛣 = ( 0 0
− sin 𝜃 cos 𝜃) .

(3.25)

For a one-step walk, 𝑡 = 1

𝛫𝑥(1) = 𝛣↑𝛫𝑥+𝑎(0) + 𝛣↓𝛫𝑥−𝑎(0)
= 𝛣↑𝛿𝑥+𝑎,0 + 𝛣↓𝛿𝑥−𝑎,0.

(3.26)

Hence, for a one-step walk, we have two Kraus operators given by

𝛫−𝑎(1) = 𝛣↑ = (cos 𝜃 sin 𝜃
0 0 )

𝛫𝑎(1) = 𝛣↓ = ( 0 0
− sin 𝜃 cos 𝜃) .

(3.27)

For a two-step walk i.e. 𝑡 = 2

𝛫𝑥(2) = 𝛣↑𝛫𝑥+𝑎(1) + 𝛣↓𝛫𝑥−𝑎(1)
= 𝛣↑ (𝛣↑𝛫𝑥+2𝑎(0) + 𝛣↓𝛫𝑥(0)) + 𝛣↓ (𝛣↑𝛫𝑥(0) + 𝛣↓𝛫𝑥−2𝑎(0))
= 𝛣↑ (𝛣↑𝛿𝑥+2𝑎,0 + 𝛣↓𝛿𝑥,0) + 𝛣↓ (𝛣↑𝛿𝑥,0 + 𝛣↓𝛿𝑥−2𝑎,0)
= 𝛣↑𝛣↑𝛿𝑥+2𝑎,0 + (𝛣↑𝛣↓ + 𝛣↓𝛣↑)𝛿𝑥,0 + 𝛣↓𝛣↓𝛿𝑥−2𝑎,0

(3.28)

Therefore, for a two-step walk, we have three Kraus operators, given by

𝛫−2𝑎(2) = 𝛣↑𝛣↑ = (cos
2(𝜃) sin(𝜃) cos(𝜃)
0 0 )

𝛫0(2) = 𝛣↑𝛣↓ + 𝛣↓𝛣↑ = ( − sin2(𝜃) sin(𝜃) cos(𝜃)
− sin(𝜃) cos(𝜃) sin2(𝜃) )

𝛫2𝑎(2) = 𝛣↓𝛣↓ = ( 0 0
− sin(𝜃) cos(𝜃) cos2(𝜃)) .

(3.29)

In the similar manner, we can find the Kraus operator for a 𝑡-steps walk using the
recurrence relation EQ. (3.22). These set of operators describes the spin dynamics
of Dirac particle. This is important as the evolution of neutrino mass eigenstates is
describe using Dirac equation with correspondence as in EQ. (2.8).
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3.3 Simulating neutrino oscillations

In this section, we will consider the simulation of neutrino oscillation. We begin
with considering the quantum circuit construction associated with mixing matrix
EQ. (3.2) and then move on to simulation two-flavor neutrino oscillations and later
generalize to the three flavor cases.

3.3.1 Quantum circuit construction of PMNSMatrix

Firstly, we map the neutrino flavor states |𝜈𝛼⟩ into a three-qubit system [87] so that
the correspondence between the two systems looks like :

|𝜈𝑒⟩ → |100⟩ |𝜈𝜇⟩ → |010⟩ |𝜈𝜏⟩ → |001⟩. (3.30)

With this, we can also write the mass-eigenstates using the mixing matrix as

|𝜈𝑖⟩ = 𝑈∗
𝑒𝑖|100⟩ + 𝑈∗

𝜇𝑖|010⟩ + 𝑈∗
𝜏𝑖|001⟩. (3.31)

Consider now the representation of the mixing matrix on this basis. In the three-
qubit system, the mixing matrix would be a 8 × 8matrix. To see the explicit form of
these, consider the term𝑈1 in mixing matrix EQ. (3.2)

𝑈1 = [
𝑐12 𝑠12 0
−𝑠12 𝑐12 0
0 0 1

] =
|100⟩ |010⟩ |001⟩

|100⟩ 𝑐12 𝑠12 0
|010⟩ −𝑠12 𝑐12 0
|001⟩ 0 0 1

(3.32)

which has a three-qubit representation

𝑈1 →

⎡
⎢
⎢
⎢
⎢
⎢

⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 𝑐12 0 −𝑠12 0 0 0
0 0 0 1 0 0 0 0
0 0 𝑠12 0 𝑐12 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥

⎦

. (3.33)

so that there’s a mixing between the terms |100⟩ and |010⟩while the other remains
the same. In the similar manner, we canwrite a three-qubit representation for other
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3. Simulating neutrino oscillation

terms𝑈𝑖(𝑖 = 0, 1, 2, 3) as follows :

𝑈0 →

⎡
⎢
⎢
⎢
⎢
⎢

⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 𝑒𝑖𝛼2/2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 𝑒𝑖𝛼1/2 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥

⎦

(3.34)

𝑈2 →

⎡
⎢
⎢
⎢
⎢
⎢

⎣

1 0 0 0 0 0 0 0
0 𝑐13 0 0 −𝑠13𝑒𝑖𝛿 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 𝑠13𝑒−𝑖𝛿 0 0 𝑐13 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥

⎦

(3.35)

𝑈3 →

⎡
⎢
⎢
⎢
⎢
⎢

⎣

1 0 0 0 0 0 0 0
0 𝑐23 −𝑠23 0 0 0 0 0
0 𝑠23 𝑐23 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥

⎦

. (3.36)

The unitary operations 𝑈𝑖 can be thought of as controlled unitary operators. To
illustrate this, consider on our earlier example of𝑈3, which is a controlled operation
on the third qubit (counting from left in |𝑖𝑗𝑘⟩). To see this, we can rewrite the
unitary𝑈3 as :

000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 𝑐12 0 −𝑠12 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 𝑠12 0 𝑐12 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 1 0
111 0 0 0 0 0 0 0 1
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Or more explicitly, if we define a unitary matrix

𝒰3 = [
1 0 0 0
0 𝑐12 −𝑠12 0
0 𝑠12 𝑐12 0
0 0 0 1

] (3.37)

Then controlled operation look like :

|𝑖𝑗1⟩ → |𝑖𝑗1⟩
|𝑖𝑗0⟩ → 𝒰3|𝑖𝑗⟩ ⊗ |0⟩ (3.38)

The similar construction can be done for𝑈0, 𝑈2, 𝑈3.

3.3.2 Passage to more than one particle

In §3.2.2, we learned onhow a set ofKraus operators corresponding to coin operator
EQ. (2.7) can be used to describe toDirac particle. We can extend this coin operator
to reproduce a set of Dirac equations, hence describing the dynamics of more than
one Dirac particle. To this end, consider a discrete-time quantum walk with 2𝑛-
dimensional coinHilbert spaceℋ𝑐 spanned by basis⨁𝑓=1,𝑛{|𝑓, ↑⟩, |𝑓, ↓⟩} and coin
operator

𝛣𝑛 = ⨁
𝑓=1,𝑛

𝛣𝑓(𝜃𝑓) (3.39)

where
𝛣𝑓 = cos 𝜃𝑓|𝑓, ↑⟩⟨𝑓, ↑ | + sin 𝜃𝑓 (|𝑓, ↑⟩⟨𝑓, ↓ | − |𝑓, ↓⟩⟨𝑓, ↑ |)

+ cos 𝜃𝑓|𝑓, ↓⟩⟨𝑓, ↓ |.
(3.40)

In this basis, the evolution operator takes the block diagonal form given by

𝑊 = 𝑆(𝛣𝑛 ⊗ 𝛪) = ⨁
𝑓=1,𝑛

𝑊𝑓 = ⨁
𝑓=1,𝑛

𝑆𝑓(𝛣𝑓 ⊗ 𝛪) (3.41)

with

𝑆𝑓 = 𝛵+ ⊗ |𝑓, ↑⟩⟨𝑓, ↑ | + 𝛵− ⊗ |𝑓, ↓⟩⟨𝑓, ↓ |. (3.42)

Analogous to coin operator EQ. (2.7), coin operator in EQ. (3.39) reproduces a set
of 𝑛Dirac equations with parameter correspondence

𝑎
𝜏 = 1 &

𝜃𝑓
𝜏 = 𝑚𝑓, 𝑓 = 1, … , 𝑛 (3.43)

with𝑓being the particle numberwith internal degree of freedom {|𝑓, ↑⟩, |𝑓, ↓⟩}
and mass 𝑚𝑓. The Kraus operator formalism that we developed in ?? can easily be
extended for coin operator in EQ. (3.39) as follows

𝒦̃(𝑛)
𝑥 (𝑡) = ⨁

𝑓=1,𝑛
⟨𝑥|𝑊𝑓|𝜓𝑥⟩ = ⨁

𝑓=1,𝑛
𝛫̃𝑥(𝜃𝑓, 𝑡). (3.44)
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where extended Kraus operator 𝛫̃𝑥(𝜃𝑓, 𝑡) follow from EQ. (3.24)

𝛫̃𝑥(𝜃𝑓, 𝑡) = ∑
𝑥′
𝑐𝑥′𝛫𝑥−𝑥′(𝜃𝑓, 𝑡) (3.45)

with 𝛫𝑥−𝑥′(𝜃𝑓, 𝑡) = ⟨𝑥|𝑊𝑡
𝑓 |𝑥′⟩.With the formalism for simulating dynamics of 𝑛

Dirac particle at hand, in the next section, we will see how to simulate neutrino
oscillations.

3.3.3 Two-flavor neutrino oscillations

In case of two-flavor neutrino oscillations, we need to mimic the dynamics of two
Diracparticles and therefore the coinhilbert space is fourdimensional space spanned
by⨁𝑓=1,2{|𝑓, ↑⟩, |𝑓, ↓⟩}. The evolutionoperator𝑊has a blockdiagonal formgiven
by

𝑊 = ⨁
𝑓=1,2

𝑊𝑓 = 𝑆(𝛣2 ⊗ 𝛪) = ⨁
𝑓=1,2

𝑆𝑓(𝛣𝑓 ⊗ 𝛪) (3.46)

where thequantumcoinoperator and shiftoperator are as inEQ. (3.40) andEQ. (3.42).
The mass eigenstates given by

|𝜈1⟩ = [𝑓(𝜃1, 𝑘) 𝑔(𝜃1, 𝑘) 0 0]𝛵 ⊗ |𝑘⟩ ≡ |𝜈1⟩𝑐 ⊗ |𝑘⟩
|𝜈2⟩ = [0 0 𝑓(𝜃2, 𝑘) 𝑔(𝜃2, 𝑘)]

𝛵 ⊗ |𝑘⟩ ≡ |𝜈2⟩𝑐 ⊗ |𝑘⟩
. (3.47)

The initial state |Ψ(0)⟩ of the neutrino corresponding to 𝛼 flavor using the mixing
matrix acting on each sector

|Ψ(0)⟩ = |𝜈𝛼⟩ = ∑
𝑖=1,2

𝑈𝛼𝑖|𝜈𝑖⟩. (3.48)

The associated reduced coin density matrix given by

𝜌𝑐(0) = ∑
𝑖,𝑗

𝑈𝛼𝑖𝑈∗
𝛼𝑗|𝜈𝑖⟩𝑐⟨𝜈𝑗|𝑐. (3.49)

The Kraus operator for two particle given by

𝒦̃𝑥(𝑡) = ⨁
𝑓=1,2

⟨𝑥|𝑊𝑓|𝜓𝑥⟩ = ⨁
𝑓=1,2

𝛫̃𝑥(𝜃𝑓, 𝑡)

wherestate |𝜓𝑥⟩ ismomentumeigenstate𝑘 inposition space representationEQ. (2.6).
At any time 𝑡, the reduced density matrix is written as

𝜌𝑐(𝑡) = ∑
𝑥
𝒦̃(2)

𝑥 (𝑡)𝜌𝑐(0)(𝒦̃(2)
𝑥 )†(𝑡). (3.50)

The probability of the 𝜈𝛼 → 𝜈𝛽 transition after a time 𝑡 is then given by expectation
value of the projection operator |𝜈𝛽⟩𝑐⟨𝜈𝛽|𝑐 i.e.

𝛲(𝜈𝛼 → 𝜈𝛽; 𝑡) = Tr [|𝜈𝛽⟩𝑐⟨𝜈𝛽|𝑐𝜌𝑐(𝑡)] (3.51)
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where
|𝜈𝛽⟩𝑐 = ∑

𝑖=1,2
𝑈𝛽𝑖|𝜈𝑖⟩𝑐 (3.52)

so that
|𝜈𝛽⟩𝑐⟨𝜈𝛽|𝑐 = ∑

𝑖,𝑗=1,2
𝑈𝛽𝑖𝑈∗

𝛽𝑗|𝜈𝑖⟩𝑐⟨𝜈𝑗|𝑐. (3.53)

3.3.4 Three-flavor neutrino oscillations

We can trivially extend the two-flavor neutrino oscillations to three-flavor neutrino
oscillation by considering the coin operator, EQ. (3.39) with 𝑛 = 3. The mass eigen-
states associated with three-particles are given by

|𝜈1⟩ = [𝑓(𝜃1, 𝑘) 𝑔(𝜃1, 𝑘) 0 0 0 0]𝛵 ⊗ |𝑘⟩ ≡ |𝜈1⟩𝑐 ⊗ |𝑘⟩
|𝜈2⟩ = [0 0 𝑓(𝜃2, 𝑘) 𝑔(𝜃2, 𝑘) 0 0]𝛵 ⊗ |𝑘⟩ ≡ |𝜈2⟩𝑐 ⊗ |𝑘⟩
|𝜈2⟩ = [0 0 0 0 𝑓(𝜃3, 𝑘) 𝑔(𝜃3, 𝑘)]

𝛵 ⊗ |𝑘⟩ ≡ |𝜈3⟩𝑐 ⊗ |𝑘⟩

. (3.54)

The initial state |Ψ(0)⟩ of the neutrino corresponding to 𝛼 flavor using the mixing
matrix acting on each sector

|Ψ(0)⟩ = |𝜈𝛼⟩ = ∑
𝑖=1,2,3

𝑈𝛼𝑖|𝜈𝑖⟩. (3.55)

The associated reduced coin density matrix given by

𝜌𝑐(0) = ∑
𝑖,𝑗=1,2,3

𝑈𝛼𝑖𝑈∗
𝛼𝑗|𝜈𝑖⟩𝑐⟨𝜈𝑗|𝑐. (3.56)

The Kraus operator for three particle given by

𝒦̃𝑥(𝑡) = ⨁
𝑓=1,2,3

⟨𝑥|𝑊𝑓|𝜓𝑥⟩ = ⨁
𝑓=1,2,3

𝛫̃𝑥(𝜃𝑓, 𝑡)

wherestate |𝜓𝑥⟩ ismomentumeigenstate𝑘 inposition space representationEQ. (2.6).
At any time 𝑡, the reduced density matrix is written as

𝜌𝑐(𝑡) = ∑
𝑥
𝒦̃(3)

𝑥 (𝑡)𝜌𝑐(0)(𝒦̃(3)
𝑥 )†(𝑡). (3.57)

The probability of the 𝜈𝛼 → 𝜈𝛽 transition after a time 𝑡 is then given by expectation
value of the projection operator |𝜈𝛽⟩𝑐⟨𝜈𝛽|𝑐 i.e.

𝛲(𝜈𝛼 → 𝜈𝛽; 𝑡) = Tr [|𝜈𝛽⟩𝑐⟨𝜈𝛽|𝑐𝜌𝑐(𝑡)] (3.58)

where
|𝜈𝛽⟩𝑐 = ∑

𝑖=1,2,3
𝑈𝛽𝑖|𝜈𝑖⟩𝑐 (3.59)

so that
|𝜈𝛽⟩𝑐⟨𝜈𝛽|𝑐 = ∑

𝑖,𝑗=1,2,3
𝑈𝛽𝑖𝑈∗

𝛽𝑗|𝜈𝑖⟩𝑐⟨𝜈𝑗|𝑐. (3.60)
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Figure 3.3: Transition probabilities of
two flavor neutrino oscillation obtained
from numerical simulation using the
Kraus operator associated with the
DTQW with initial state |𝜈𝜇⟩. The coin
angles are 𝜃1 = 0.001 rad., 𝜃2 = 0.0986
rad., and the mixing angle 𝜙 = 0.698 rad.
with 𝑘̃ = 0.05.

3.4 Results

In §3.3.2, wehave seen that evolutionoperator in EQ. (3.46) describes the set ofDirac
equations that describes neutrino flavor oscillations and, we canmake use this to es-
tablish a map with neutrino phenomenology, therefore allowing one to fix the QW
parameters for a given neutrino experiment. More explicitly, using the correspon-
dence made between quantum walk and Dirac equation in EQ. (2.8), we can write
the oscillation frequency in EQ. (3.9) in terms of quantum parameters as

Δ𝑚2
𝑖𝑗𝐿

4𝛦 =
Δ𝜃2𝑖𝑗
4𝑘̃

𝑡
𝜏 (3.61)

where Δ𝜃2𝑖𝑗 = 𝜃2𝑖 − 𝜃2𝑗 and Δ𝑚2
𝑖𝑗 = 𝑚2

𝑖 − 𝑚2
𝑗 . FIG. 3.3 and 3.4 shows the transition

probability as a function of the number of steps of DTQW for two-flavor and three-
flavor neutrino oscillations, respectively obtained from evolution describe by the
Kraus operators. We canobserve the oscillatory behavior of flavors. One canobserve
that the plot reproduces the one corresponding to actual calculations of neutrino
oscillations (see for example [88]) with taken mass values

Δ𝑚2
21 = 7.50 × 10−5 eV2

Δ𝑚2
31 = 2.457 × 10−3 eV2

Δ𝑚2
32 = 2.382 × 10−3 eV2

. (3.62)
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Figure 3.4: Transition probabilities of
three flavor neutrino oscillation obtained
from numerical simulation using the
Kraus operator associated with the
DTQW Left for long time steps and
Right short time steps with initial state
|𝜈𝑒⟩.. The coin angles are 𝜃1 = 0.001 rad.,
𝜃2 = 0.01963 rad. 𝜃3 = 0.12797 rad.,
and the mixing angle 𝜙13 = 0.16087 rad.,
𝜙23 = 0.69835, 𝜙12 = 0.59437, and 𝛿 = 0
with 𝑘̃ = 0.1.

3.4.1 Linear Entropy

Amongvariousmeasures of degreeof entanglement [89], the linear entropy is shown
to be useful in studying entanglement in neutrino oscillations [90]. The linear en-
tropy associated with a bipartite system is defined as

𝑆𝑗 =
𝑑

𝑑 − 1 (1 − Tr(𝜌2𝑗 )) , 𝑗 = 1, 2. (3.63)

where 𝜌𝑗 represent the reduced density matrix of system 𝑗 and 𝑑 is dimension of
density matrix 𝜌𝑗.

In case of twoflavorneutrinooscillations,we canwrite thestate shown inEQ. (3.5)
as the Bell-like superposition

|𝜈𝛼(𝑡)⟩ = 𝑈̃𝛼𝜇(𝑡)|1⟩𝜈𝜇|0⟩𝜈𝜏 + 𝑈̃𝛼𝜏|0⟩𝜈𝜇|1⟩𝜈𝜏 (3.64)

where
𝑈̃𝛼𝛽(𝑡) = ∑

𝑗
𝑈𝛼𝑗𝑈∗

𝛽𝑗𝑒
−𝑖𝛦𝑗𝑡. (3.65)

The linear entropies can found by straightforward calculation using associated den-
sity matrix of state |𝜈𝛼(𝑡)⟩, and are given by

𝑆𝜇 = 𝑆𝜏 = 4|𝑈̃𝛼𝑒(𝑡)|2|𝑈̃𝛼𝜇(𝑡)|2. (3.66)

Therefore, the linear entropies can be written in term of transition probabilities
which continues to be true for three flavor case [90]. FIG. 3.5 shows the linear en-
tropy 𝑆𝜇 obtained from transition probabilities given by EQ. (3.51) using EQ. (3.66).
We find that degree of entanglement is largest when both transition probabilities
are equals to 0.5which corresponds to maximally entangled Bell pair state andmin-
imumwhen one of the transition probability is zero which corresponds to unentan-
gled state. For three-flavor case, we can write three-flavor state as
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Figure 3.5: Linear entropy𝑆𝜇 (full line) as
a function of number of steps (shown for
single cycle) alongwith transitionprobabil-
ities (dashed lines) 𝛲(𝜈𝜇 → 𝜈𝜇) (red) and
𝛲(𝜈𝜇 → 𝜈𝜏) (blue).

|𝜈𝛼(𝑡)⟩ = 𝑈̃𝛼𝑒|1⟩𝜈𝑒|0⟩𝜈𝜇|0⟩𝜈𝜏 + 𝑈̃𝛼𝜇|0⟩𝜈𝑒|1⟩𝜈𝜇|0⟩𝜈𝜏 + 𝑈̃𝛼𝜏|0⟩𝜈𝑒|0⟩𝜈𝜇|1⟩𝜈𝜏 . (3.67)

In case of multipartite system, we can define partial linear entropies corresponding
to various bipartition of total system [90]. We adopt the notation 𝑆(𝛼,𝛽;𝛾)𝜁 for linear

entropy of reduced density matrix 𝜌(𝛼,𝛽)𝜁 = Tr𝛾(𝜌𝜁) where 𝜁 corresponds to initial
flavor state. Similar to two flavor case, the partial linear entropies can be written in
terms of transition probabilities and given by

𝑆(𝑒,𝜇;𝜏)𝛼 = 4|𝑈̃𝛼𝜏(𝑡)|2 (1 − |𝑈̃𝛼𝜏(𝑡)|2) . (3.68)
The remaining twopartial entropies canbe foundby simplypermuting 𝑒, 𝜇, 𝜏. Fig. 3.6
shows the partial linear entropies for initial state |𝜈𝑒(0)⟩. Themaximumof these par-
tial shows the point at which maximum entanglement exist between those two fla-
vors. To understand the behavior of overall degree of entanglement, we can define
average linear entropy as mean value of partial entropies, given by

⟨𝑆𝛼⟩ =
8
3 (|𝑈̃𝛼𝑒|

2|𝑈̃𝛼𝜇|2 + |𝑈̃𝛼𝑒(𝑡)|2|𝑈̃𝛼𝜏|2 + |𝑈̃𝛼𝜇|2|𝑈̃𝛼𝑒𝜏|2) . (3.69)

FIG. 3.6 shows behavior of average linear entropy ⟨𝑆𝑒⟩, we observe similar behavior
as in case of two-flavor neutrino oscillations. This shows strong correlation between
the components 𝜈𝜇 and 𝜈𝜏.

3.5 Outlook

In this work, we proposed a novel scheme to simulate neutrino oscillations using
DTQW formalism. We considered the evolution of reduced dynamics of coin den-
sitymatrix using set ofKraus operators obtained from tracing out the position space.
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Figure 3.6: Left Partial linear entropies
𝑆(𝛼,𝛽;𝛾)𝑒 as a function of number of steps
(shown for a single cycle) with black cor-
responds to 𝑆(𝜇,𝜏;𝑒)𝑒 , blue corresponds to
𝑆(𝜏,𝑒;𝜇)𝑒 , and red corresponds to 𝑆(𝑒,𝜇;𝜏)𝑒 .
Right: Average linear entropy ⟨𝑆𝑒⟩ as a
function of number of steps (shown for a
single cycle).

This in turn means effectively treating dynamics in position space as environmental
effect. We obtained the transition probabilities of neutrino flavor states in the same
framework. To study the degree of entanglement between different flavors, we con-
sidered linear entropy which found to be maximum for bell-pair state.

We conclude with a few interesting future directions for this work. Firstly, given
the recent development in simulating open system dynamics in quantum devices
[91, 92], the demonstration of a quantum algorithm of open system approach to
neutrino oscillation on a near-term quantum device would give laboratory verifica-
tion of the phenomenon. Furthermore, in previous studies, possible decoherence
effects induced by new physics (e.g., quantum gravity, string theory) in neutrino os-
cillations have been studied by considering the open system framework [93], and
bounds on dissipative parameters are obtained for various neutrino experiments
[94, 95]. Our scheme is open to incorporating these dissipation effects, which may
provide an exciting direction for investigating non-standard effects.
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“Even after studying quantum algorithms
for quite some time, they continue to sur-
prise me.”

– Shelby Kimmel

Search algorithm 4

Quantum computers are engineered with the purpose of surpassing the computa-
tional capabilities of conventional computers through the execution of quantum
algorithms [96–98]. These quantum algorithms have a wide range of practical ap-
plications from cryptography, search and optimization, and quantum system sim-
ulation to the resolution of extensive sets of linear equations [99–110]. Notably,
Grover’s search algorithm stands out as a widely recognized quantum algorithm ca-
pable of searching unsorted databases with a quadratic speed advantage over its clas-
sical counterparts [111]. Grover’s algorithm, combinedwith quantumwalk, hasmo-
tivated the foundation and development of the commonly known research venture
of Quantum walk search algorithms for searching and sorting unstructured spatial
data [100, 112–114]. Quantum search algorithms have an asymptotic quadratic accel-
eration in terms of oracle calls, unlike their classical cousins [112, 115].

Quantum-walk search with multiple points has been extensively studied in previ-
ous literature [116–121]. While the algorithm can locate multiple nodes within a
graph, however not all the marked points are equally amplified. Further, the algo-
rithm completely ignores achronological ordering or category of the marked nodes,
if any. In this chapter, we specifically address these issues regarding the QWSA.
To resolve these issues, we consider the multilayered graph structure (See FIG. 4.1)
which amounts to extension of Hilbert space. Each marked point, then, is associ-
ated with a different layer of the graph. As we will see, this multilayer structure
of the graph avoids the possible interference between different search operations of
marked points. We can further use this multilayer structure to consider the search
on categorical datasets. In this case, we regard each layer as a different category to
which a marked point might be associated with. The search algorithm, therefore,
looks for the marked point along with its category—multilayer search algorithm.
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4. Search algorithm

Figure 4.1: Consider a graph (on the left)
– a two-dimensional lattice – consists of
three marked nodes (in red). Our algo-
rithmcopies the graph intomultiple copies
where eachcopy consists of a singlemarked
point. The multiple copies can be utilize
as additional label for the marked nodes
as well. We call the labeling static labeling
if the probability amplitude can not flow
between the layers and dynamical labeling
if the probability amplitude can flow be-
tween the layers (shown in blue).

The distinction between static and dynamic labeling relies on whether there is
a flow of probability between various sheets. Our refined algorithm can address
a variety of applications, including real-time object tracking, trajectory prediction,
financial market analysis, dynamic optimization problems, and network manage-
ment and routing that includes dynamical components. The labeling concept is not
new and has been applied to element distinctness problems in quantum algorithms.
However, to our knowledge, we are not aware of the application of the labeling
concept in the context of quantum search algorithms. As a concrete illustration of
the scope of applicability of our algorithm, we consider a particle moving in a two-
dimensional lattice with time and show that the algorithm is capable of detecting
the coordinates of the particle as it moves with time. Further, to properly connect
with the idea of integrating ourQWSAwith state-of-the-art quantumhardware, we
construct an equivalent quantum circuit that can implement the algorithm.

4.1 Quantum walk search algorithm

Let 𝐺 = (𝑉, 𝛦) be a finite 𝑑-regular graph, where 𝑉 is a set of vertices (nodes), 𝛦 is
the set of edges connecting the nodes, and𝛮 = |𝑉| is the number of vertices. The
labels of the vertices are 0 to 𝛮 − 1, and the labels of the edges are 0 to 𝑑 − 1. A
discrete-time quantum walk on the graph𝐺 generates a unitary evolution operator
in the Hilbert space ℋ𝑈 = ℋpos ⊗ ℋcoin: the position space ℋpos and the coin
space ℋcoin. ℋpos is spanned by {|𝑣⟩: 0 ≤ 𝑣 ≤ 𝛮 − 1}, while ℋcoin is spanned
by {|𝑎⟩ ∶ 0 ≤ 𝑎 ≤ 𝑑 − 1} represents the internal states (often called “coin states”)
associated with each node. At any time 𝑡, the state can be represented by

|Ψ(𝑡)⟩ = ∑
𝑎,𝑣

𝜙𝑎,𝑣(𝑡)|𝑎, 𝑣⟩ . (4.1)

Each step of the DTQW is generated by a unitary operator consisting of coin oper-
ation 𝐶 on the internal degrees of freedom followed by a conditional position shift
operation 𝑆 on the configuration space. Therefore, the state at time 𝑡 and (𝑡 + 𝜏)
(where 𝜏 is the time required to implement one step of the walk) satisfies the rela-
tion,

|Ψ(𝑡 + 𝜏)⟩ = 𝑈|Ψ(𝑡)⟩ = 𝑆(𝐶 ⊗ 𝛪)|Ψ(𝑡)⟩ , (4.2)
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4.1. Quantum walk search algorithm

whereby imposing the operator formof the evolution operator𝑈 = 𝑆(𝐶⊗𝛪). With
this information, we are set to address the QWSA. Consider that the walker starts
from an initial state, which is a uniform superposition of all states over internal and
external degrees of freedom,

|Ψ(0)⟩ = |𝜓(𝑑)
𝑐 ⟩ ⊗ 1

𝛮 ∑|𝑣⟩ , where |𝜓(𝑑)
𝑐 ⟩ = 1

√𝑑
𝑑−1
∑
𝑎=0

|𝑎⟩ . (4.3)

where |𝜓(𝑑)
𝑐 ⟩ is uniformsuperpositionstate in coin space. The ideabehind theQWSA

is starting with EQ. (4.3), can we define a unitary operator that localizes the state to
a certain point (say |𝑣0⟩) on the grid. This operation is mathematically represented
as

|Ψ(𝑡)⟩ = (𝑈′)𝑡 |Ψ(0)⟩ , 𝛲𝑣(𝑡) = |⟨𝑣|Ψ(𝑡)⟩|2max @ 𝑣=𝑣0 . (4.4)

Themathematical equation above states simply that after 𝑡 such operations of a uni-
tary operator 𝑈′, the wave function localizes at the point |𝑣0⟩ where the time 𝑡 is
related to the size of the grid and the marked node configuration. The probability
of success is the maximal probability for locating the node |𝑣0⟩ and is related to the
number of times 𝑡, the 𝑈′ operator has been applied on the initial state. For a sin-
gle marked node, the operator𝑈′ is related to the unitary operator for the DTQW
𝑈 = 𝑆 ⋅ (𝐶 ⊗ 𝛪) by the relation,

𝑈′ = 𝑈 ⋅ 𝑅 , (4.5)

where 𝑅 is called ”Search Oracle” and contains the information about the marked
node(s). In essence, it is a phase shift operator that reverses the phase of all but one
node ( i.e. themarked node) by 𝑒𝑖𝜋. For a single marked node, the SearchOracle has
a simple functional form [114, 121]

𝑅 = 𝛪 − 2|𝜓(𝑑)
𝑐 ⟩⟨𝜓(𝑑)

𝑐 | ⊗ |𝑣0⟩⟨𝑣0| . (4.6)

Without the coin state, this form coincides with the Grover SearchOracle [122]

𝑈𝑓 = 𝛪 − 2|𝑣0⟩⟨𝑣0| . (4.7)

The search oracle 𝑅 can be easily generalized for multiple marked nodes,

𝑅 = 𝛪 − 2 |𝜓(𝑑)
𝑐 ⟩⟨𝜓(𝑑)

𝑐 | ⊗ ∑
𝑣∈𝛭

|𝑣⟩⟨𝑣| (4.8)

where𝛭 is set ofmarkedmultiplemarked node. To illustrate the concrete structure
of the algorithm, we will consider a finite two-dimensional lattice with open and
periodic boundary conditions.
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4. Search algorithm

To unclutter the notation, we define set of
points 𝜙1 = {0, 1, … √𝛮 − 2} and 𝜙2 =
{1, 2, … , √𝛮 − 1}.

4.1.1 Finite two-dimensional lattice

Consider the quantum-walk searchalgorithm in the√𝛮×√𝛮 square lattice. Wewill
consider both open and periodic boundary conditions. The quantumstate spanned
by {|𝑖, 𝑗⟩ ⊗ |𝑥, 𝑦⟩ ∶ 𝑖, 𝑗 ∈ [0, 1] & 0 ≤ 𝑥, 𝑦 ≤ √𝛮 − 1} where |𝑖, 𝑗⟩ represents coin
state, and |𝑥, 𝑦⟩ represents position state. The shift operator 𝑆 is the flip-flop shift
operator given by

𝑆|𝑖, 𝑗⟩ ⊗ |𝑥, 𝑦⟩ = |1 − 𝑖, 1 − 𝑗⟩ ⊗ |𝑥 + (−1)𝑖𝛿𝑖𝑗, 𝑦 + (−1)𝑗(1 − 𝛿𝑖𝑗)⟩ . (4.9)

The flip-flop shift operator invert the coin state as it shift the position state. This
inversion in the con state is important for speeding up search algorithms on the two-
dimensional lattice [114, 121]. In explicit notation, we can write coin state as

|↑⟩ = |00⟩ = [
1
0
0
0
] , |↓⟩ = |11⟩ = [

0
0
0
1
] ,

|←⟩ = |01⟩ = [
0
1
0
0
] , |→⟩ = |10⟩ = [

0
0
1
0
] .

(4.10)

In this notation, the flip-flop ship operator for the periodic boundary condition
given by

𝑆(2)𝑐 = |↓⟩⟨↑| ⊗∑
𝑥,𝑦

|𝑥, 𝑦 + 1⟩⟨𝑥, 𝑦| + |↑⟩⟨↓| ⊗∑
𝑥,𝑦

|𝑥, 𝑦 − 1⟩⟨𝑥, 𝑦|

+ |←⟩⟨→| ⊗∑
𝑥,𝑦

|𝑥 + 1, 𝑦⟩⟨𝑥, 𝑦| + |→⟩⟨←| ⊗∑
𝑥,𝑦

|𝑥 − 1, 𝑦⟩⟨𝑥, 𝑦|
(4.11)

where superscript in 𝑆(2)𝑐 is to emphasize that there are two directions of motion. In
periodic boundary condition, the positionstate obey the cyclic property |𝑥+√𝛮⟩ =
|𝑥⟩ and |𝑦 + √𝛮⟩ = |𝑦⟩. Therefore, the geometry of two-dimensional lattice with
periodic boundary condition is equivalent to torus. For open boundary condition,
the shift operator is defined as the sum of interior term (see FIG. 4.2).

𝑆(2)int = |↓⟩⟨↑| ⊗ ∑
𝑥,𝑦∈𝜙1

|𝑥, 𝑦 + 1⟩⟨𝑥, 𝑦| + |↑⟩⟨↓| ⊗ ∑
𝑥,𝑦∈𝜙2

|𝑥, 𝑦 − 1⟩⟨𝑥, 𝑦|

+ |←⟩⟨→| ⊗ ∑
𝑥∈𝜙1 ,𝑦

|𝑥 + 1, 𝑦⟩⟨𝑥, 𝑦| + |→⟩⟨←| ⊗ ∑
𝑥∈𝜙2 ,𝑦

|𝑥 − 1, 𝑦⟩⟨𝑥, 𝑦|
(4.12)
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4.1. Quantum walk search algorithm

Figure 4.2: The structure of the shift op-
erator in the case of open boundary condi-
tions is different in the interior and exterior
of the grid. The figure shows the self-loop
at the boundary point of the lattice which
ensures the unitarity of the shift operator.

and boundary (exterior)

𝑆(2)ext = |↑⟩⟨↑| ⊗ ∑
𝑥,𝑦=√𝛮−1

|𝑥, 𝑦⟩⟨𝑥, 𝑦| + |↓⟩⟨↓| ⊗ ∑
𝑥,𝑦=0

|𝑥, 𝑦⟩⟨𝑥, 𝑦|

+ |→⟩⟨→| ⊗ ∑
𝑥=√𝛮−1,𝑦

|𝑥, 𝑦⟩⟨𝑥, 𝑦| + |←⟩⟨←| ⊗ ∑
𝑥=0,𝑦

|𝑥, 𝑦⟩⟨𝑥, 𝑦|
(4.13)

as 𝑆(2)o = 𝑆(2)int + 𝑆(2)ext . The explicity form of 𝑆(2)int and 𝑆
(2)
ext is chosen so that the shift

operator 𝑆(2)o is unitary i.e. 𝑆(2)o (𝑆(2)o )† = (𝑆(2)o )†𝑆(2)o = 𝛪 (see appendix 6). The
coin operator in the quantum-walk search is chosen to be the Grover diffusion op-
erator [123, 124]

𝐺(2) = 2|𝜓(2)
𝑐 ⟩⟨𝜓(2)

𝑐 | − 𝛪 = 1
2 [

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

] . (4.14)

The state is initialized as an equal superposition in coin and position space, given by

|Ψ(0)⟩ = 1
2 ∑𝑖,𝑗

|𝑖, 𝑗⟩ ⊗ 1
𝛮 ∑

𝑥,𝑦
|𝑥, 𝑦⟩ = |𝜒⟩ ⊗ 1

𝛮 ∑
𝑥,𝑦

|𝑥, 𝑦⟩ (4.15)

The modified unitary operator in Eq. EQ. (4.5) is applied optimal time 𝑡op times to
initial state

|Ψ(𝑡op)⟩ = (𝑈′)𝑡op|Ψ(0)⟩ (4.16)
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Figure 4.3: Schematic diagram of
the structure of Hilbert space for
quantum-walk search for ordered
marked nodes.

which amplifies the probability amplitude of target states. For the two-dimensional
lattice, the complexity of the algorithm is given by 𝒪(ln𝛮). The running time is
𝑡op = 𝒪(√𝛮 ln𝛮) and the success probability is 𝑝succ = 𝒪(1/ ln𝛮) [114].

4.2 QWSA for ordered marked nodes

In previous literature [116–121], quantum-walk search with multiple marked points
has been extensively studied. In a general QWSA, multiple marked points can in-
deed exist on the graph, and there is no inherent (chronological) ordering associated
with these marked points. The algorithm’s objective is to efficiently locate any one
of these marked points without any preference for their order. In this section, we
consider that there is an additional (and preferably achronological) ordering associ-
atedwithmarked points, and devise a refined algorithm that addresses this ordering.
More generally, our refined algorithm will address the case where we have multiple
marked points belonging to different categories and we will be searching for the
point along with its category.

Forstarters, consider a total of𝑚different categories 𝜂𝑧where 𝑧 = 0, 1, … ,𝑚−1. Fur-
ther, we assume that a particular category 𝜂𝑧 has a unique marked point. To repre-
sent this system, we introduce additional label states |𝜂𝑧⟩with 0 ≤ 𝑧 ≤ 𝑚−1, adding
an extra dimension to the Hilbert space. We consider a finite two-dimensional lat-
tice, although our method can be easily generalized to arbitrary graphs and dimen-
sions. FIG. 4.3 shows the schematic diagram of Hilbert space for the search algo-
rithm, which shows replicated layers of the 2𝑑 lattice representing different cate-
gories 𝜂𝑧. Depending onwhether themotion between different layers (categories) is
allowed or not, we have two different scenarios: Static labeling and Dynamic label-
ing.

4.2.1 Static Labelling

Consider the case where the walker is not allowed to move between the layers. The
Hilbert space is spanned by basis {|𝑖, 𝑗⟩ ⊗ |𝑥, 𝑦⟩ ⊗ |𝜂𝑧⟩ ∶ 𝑖, 𝑗 ∈ [0, 1] & 0 ≤ 𝑥, 𝑦 ≤
𝛮 − 1 & 0 ≤ 𝑧 ≤ 𝑚 − 1}. The oracle can be written as

𝑅 = 𝛪 − 2|𝜓(2)
𝑐 ⟩⟨𝜓(2)

𝑐 | ⊗∑
𝑧

∑
𝒳∈𝛭𝑧

|𝑥, 𝑦⟩⟨𝑥, 𝑦| ⊗ |𝜂𝑧⟩⟨𝜂𝑧| (4.17)

where𝛭𝑧 is set ofmarkednodes in layer 𝑧, and𝒳 ≡ (𝑥, 𝑦) to unclutter the notations.
Since thewalker doesn’tmove between the layers, the shift and coin operator are the
same as theunorderedmarked case as described in ??. Note that theHilbert space for
this case is reducible to a direct sumofHilbert spaces associatedwith different layers.
Therefore, the algorithmboils down to a set of independent reducedQWSAon each
layer. Following the reducibility of the Hilbert space, we can write the evolution
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Figure 4.4: Amplification of marked
nodes with steps for static labelling in the
case of (a) open grid and (b) torus. In case
of open grid, the probability of marked
nodes [6, 8] and [8, 9] coincides, while in
case of torus, the probability of all marked
nodes coincide with each other.

operator as a direct sum of evolution operators of individual layers

𝑈′ = 𝑈 ⋅ 𝑅 =⨁
𝑧
𝑈′
𝑧 =⨁

𝑧
(𝑈𝑧 ⋅ 𝑅𝑧) , (4.18)

where𝑈𝑧 = 𝑆𝑧(𝐶𝑧 ⊗ 𝛪) and

𝑅𝑧 = 𝛪 − 2|𝜓(2)
𝑐 ⟩⟨𝜓(2)

𝑐 | ⊗ ∑
𝒳∈𝛭𝑧

|𝑥, 𝑦⟩⟨𝑥, 𝑦| . (4.19)

The initial state is an equal superposition in coin, position, and label space, given by

|Ψ(0)⟩ = 1
2 ∑𝑖,𝑗

|𝑖, 𝑗⟩ ⊗ 1
𝛮√𝑚 ∑

𝑥,𝑦,𝑧
|𝑥, 𝑦⟩ ⊗ |𝜂𝑧⟩ (4.20)

Themodifiedoperator𝑈′ is applied 𝑡op times to thestate,whichamplifies themarked
points and their associated labels. To illustrate the algorithm, we perform a numeri-
cal simulation of the algorithmon 16×16 grid under both open and periodic bound-
ary conditions. The simulation includes fourmarkednodes at position {(6, 8), (8, 9), (12, 5), (15, 5)},
which necessitates four layers or label states.

FIG. 4.4 shows the probability of finding a labeled marked node as a function
of the number of steps taken by the algorithm. Figure 4.5 displays the probability
distribution at the optimal time step. For the periodic boundary condition, we ob-
serve that the probabilities of finding eachmarked node coincide. This results from
the translational symmetry inherent in the toroidal geometry of the lattice. In con-
trast, under the open boundary condition, the probability of finding amarked node
generally depends on its location due to boundary effects. Increasing the system size
would lead us to anticipate the disappearance of boundary effects. Consequently,
we expect the two probability distributions to converge as the number of nodes𝛮
approaches infinity.
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Figure 4.5: Probability distribution at
𝑡op step for different layers with a single
marked point in each layer found using
quantum-search algorithm with static la-
belling Top: Open boundary condition
Below Periodic boundary condition

As a consequence of separability of algorithm to independent QWSA on each
layer, the optimal time 𝑡op is the same as that for a conentional QWSA. Although,
since the probability weight of wavefunction on each layer is scaled down by the
factor of number of layers, as a result the success probability 𝑝succ is also scaled down
by the number of the same factor. Therefore, the success probability associatedwith
each layer is 𝒪(1/(𝑚 ln𝛮)).

4.2.2 Dynamic Labelling

For the dynamical labeling, where we allow for inter-layer transition, the coin space
includes an additional direction to facilitate suchmotion (along the direction of the
labels). The corresponding Hilbert space is spanned by a basis {|𝑖, 𝑗, 𝑘⟩ ⊗ |𝑥, 𝑦⟩ ⊗
|𝜂𝑙⟩ ∶ 𝑖, 𝑗, 𝑘 ∈ [0, 1] & 0 ≤ 𝑥, 𝑦 ≤ 𝛮 − 1 & 0 ≤ 𝑘 ≤ 𝑚 − 1} which has dimen-
sion 8𝑚𝛮2. The Grover diffusion operator𝐺3 is elevated to a three-qubit operator.
There can be further analogous extensions to open and periodic boundary condi-
tions along the label direction, but we will stick to open boundary along the label
direction. Similarly, the shift operator becomes,

𝑆|𝑖, 𝑗, 𝑘⟩ ⊗ |𝑥, 𝑦, 𝜂𝑧⟩ = |1 − 𝑖, 1 − 𝑗, 1 − 𝑘⟩⊗
|𝑥 + (−1)𝑖(1 − 𝛿𝑖𝑗), 𝑦 + (−1)𝑖𝛿𝑖𝑗, 𝜂𝑧+(−1)𝑘⟩

(4.21)

The modified unitary evolution for the search given by

𝑈′ = 𝑈 ⋅ 𝑅 = 𝑆(𝐺3 ⊗ 𝛪) ⋅ 𝑅 (4.22)

where the search oracle is given by

𝑅 = 𝛪 − 2|𝜓(3)
𝑐 ⟩⟨𝜓(3)

𝑐 | ⊗∑
𝑧

∑
𝒳∈𝛭𝑧

|𝑥, 𝑦⟩⟨𝑥, 𝑦| ⊗ |𝜂𝑧⟩⟨𝜂𝑧| . (4.23)
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Figure 4.6: Amplification of marked
nodes with steps for dynamic labelling in
the case of (a) open grid and (b) torus.

The initial state is a uniform superposition in Hilbert space. Themodified operator
𝑈′ is applied 𝑡op times on this state, which amplifies the marked point along with
labels.

We demonstrate the amplification due to dynamic labeling for the case of the
open grid and torus with the same parameters as static case in FIG. 4.6, and proba-
bility distribution at optimal time-step in FIG. 4.7. Note that in this case, the torus
(as in the case of static labeling) has a unique 𝑡op. While the open grid performs
muchbetter than the static labeling and possesses a close to unique 𝑡op where all the
marked nodes are simultaneously amplified.

4.2.3 Scaling

This section investigates how the success probability of our search algorithm scales
with the lattice size. We illustrate this by considering the algorithmwith twomarked
nodes, {[0, 0], [1, 1]}, on lattices of varying sizes. In FIG. 4.8 presents the success
probability of individual marked points and the collective success probability (sum
of all individual success probabilities) for both static and dynamical cases. We fit
the curve 𝑎/ log(𝑏𝛮), which indicating that the algorithm exhibits similar scaling
behavior as the conventional QWSA in two-dimensional lattices [114]. Therefore,
the collective sucess probability of our search algorithm scales as𝒪(1/ ln(𝛮)), while
the success probability of individual marked point scales as 𝒪(1/𝑚 ln(𝛮)).
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Figure 4.7: Probability distribution at
𝑡op step for different layers with a single
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4. Search algorithm

Figure 4.9: Particle moving in two-
dimensional lattice in discrete-time steps.

4.3 Quantum tracking problem

So far, we have examined our refinedQWSA for searches on 2𝑑 surfaces using open
and periodic boundary conditions. We have established that in most cases, the al-
gorithmworks better for simultaneous amplification of multiple marked nodes at a
unique time 𝑡op. In simple terms, this implies that there exists a unitary operator𝑈
such that𝑈𝑡op acting on amaximally superposed initial state canmaximize the prob-
ability of the marked nodes. In this section we demonstrate a practical application
of the algorithm introduced in §4.2 for tracking a particle moving in real-time. We
consider a particlemoving on a2𝑑 surface and the time taken by the particle tomove
one step is 𝛿𝑡 (See FIG. 4.9). Let us assume that position of particle at an instance of
time 𝑡𝑧 = 𝑧𝛿𝑡 with 𝑧 = 0, 1, 2, … is𝒳𝑧 = (𝑥𝑧, 𝑦𝑧). Our aim is to find the trajectory of
the particle i.e. 𝒳𝑧.

A two-dimensional lattice represents the particle’s configuration space and la-
bels represent time steps. For example 𝒳𝑧 = (𝑥𝑧, 𝑦𝑧) represents the coordinates
of the particle at time 𝑡 = 𝑧𝛿𝑡. However, it would seem that associating labels
with time has an obvious disadvantage in terms of resources, since the time vari-
able continues to increase and so does the labels, hinting at a requirement of po-
tentially infinite resource well. This in turn makes our labeling algorithm practi-
cally inapplicable owing to our limited resources. To overcome this problem, we
will recycle our labels. Let’s understand this in more detail. Let us define layers
𝑙0, 𝑙1, 𝑙2, … representing the configuration space of aparticle at time0, 𝛿𝑡, 2𝛿𝑡, …. Fur-
thermore, we assume that the probability amplification takes computational time
(𝑠𝑖) such that 𝑠0, 𝑠1, 𝑠2, … ≪ 𝛰(𝛵). In general, the maximum time of amplification
𝛵 is greater than the time step 𝛿𝑡. Therefore, the information about the particle’s
appearance must remain in the constructed oracle for at most time 𝛵. Let us define
𝑚 as𝑚 = [𝛵/𝛿𝑡]which is the number of steps that particles take in time 𝛵which is
the least number of layers required. Therefore, we can write the oracle as
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4.4. Quantum circuit implementation

𝑅 = 𝛪 − 2|𝜓(2)
𝑐 ⟩⟨𝜓(2)

𝑐 | ⊗ [𝑓(0, 𝛵)|𝑥0, 𝑦0, 𝜂0⟩⟨𝑥0, 𝑦0, 𝜂0| + 𝑓(𝛿𝑡, 𝛵 + 𝛿𝑡)|𝑥1, 𝑦1, 𝜂1⟩⟨𝑥1, 𝑦1, 𝜂1| + ⋯
+𝑓(𝑚𝛿𝑡, 𝛵 + 𝑚𝛿𝑡)|𝑥𝑚, 𝑦𝑚, 𝜂𝑚⟩⟨𝑥𝑚, 𝑦𝑚, 𝜂𝑚| + 𝑓((𝑚 + 1)𝛿𝑡, 𝛵 + (𝑚 + 1)𝛿𝑡)|𝑥𝑚+1, 𝑦𝑚+1, 𝜂0⟩⟨𝑥𝑚+1, 𝑦𝑚+1, 𝜂0| + ⋯]
= 𝛪 − 2|𝜓(2)

𝑐 ⟩⟨𝜓(2)
𝑐 | ⊗ [𝑓(0, 𝛵)|𝑥0, 𝑦0, 𝜂0⟩⟨𝑥0, 𝑦0, 𝜂0| + 𝑓(𝛿𝑡, 𝛵 + 𝛿𝑡)|𝑥1, 𝑦1, 𝜂1⟩⟨𝑥1, 𝑦1, 𝜂1| + ⋯

+𝑓(𝛵, 2𝛵)|𝑥𝑚, 𝑦𝑚, 𝜂𝑚⟩⟨𝑥𝑚, 𝑦𝑚, 𝜂𝑚| + 𝑓(𝛵 + 𝛿𝑡, 2𝛵 + 𝛿𝑡)|𝑥𝑚+1, 𝑦𝑚+1, 𝜂0⟩⟨𝑥𝑚+1, 𝑦𝑚+1, 𝜂0| + ⋯]
= 𝛪 − 2|𝜓(2)

𝑐 ⟩⟨𝜓(2)
𝑐 | ⊗∑

𝑛∈ℤ
𝑓(𝑛𝛿𝑡, 𝑛𝛿𝑡 + 𝛵)|𝑥𝑛, 𝑦𝑛, 𝜂𝑛mod𝑚⟩⟨𝑥𝑛, 𝑦𝑛, 𝜂𝑛mod𝑚|

(4.24)

where 𝑓(𝑥, 𝑦) = Θ(𝑥) − Θ(𝑦), and Θ(𝑥) is Heaviside step function. The shift-
operator is used in accord with boundary conditions, and the coin-operator is the
Grover diffusion operator 𝐺2 as we are considering single-layer amplification. The
time profile of probability distribution for different layers is provided in supplemen-
tary material.

4.4 Quantum circuit implementation

In this section, wewill propose quantum circuit implementation for quantumwalk
search for ordered marked nodes as well as quantum tracking problems that have a
similar structure. In FIG. 4.10, we show a schematic of a quantum circuit for quan-
tumwalk search. The qubits 𝑞0, 𝑞1, … , 𝑞𝐷 represents position space so that 2𝐷 = 𝛮,
and 𝑐1, 𝑐2 represents coin space. The initial state which is a uniform superposition in
position and coin space is constructed through the Hadamard operator. The mod-
ified unitary operator is then applied 𝑡op times which gives probability amplitude
amplification for marked points.

For our QWSA with labelled marked points, we introduce extra qubits for the lay-
ers. FIG. 4.10 represents a schematic of a quantum circuit for static labelling with
additional 𝑄1, 𝑄2, … , 𝑄𝐷′ qubits for 2𝐷′ = 𝑚 layers (or labels). The circuit for dy-
namic labelling is similar except we have three qubits for coin space. The equivalent
circuit for quantum tracking is also similar to that for QWSA with static labelling.
The specific structure of the oracle and other elements depends on configurations
of marked points and turns out to be control unitary operations. We construct the
coin, shift and the oracle operator, explicitly below.

4.4.1 Coin-Operator

Theexplicit implementationof coin and shiftoperator, and complexity in thediscrete-
time quantum walk has been previously done in [39, 125–127]. In QWSA, the coin
operator is a Grover diffusion operator in two qubits. The optimal circuit con-
struction for a qubit real unitary operator requires at most 2 CNOT and 12 one-
qubit gates [128]. Although, the Grover diffusion operator can be implemented
with 1 CNOT and 4 one-qubits gates (See FIG. 4.11). Another way to implement
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Figure 4.10: Schematic of the quan-
tum circuit for Left quantum-walk search
Right quantum-walk search for ordered
marked points.

the Grover diffusion operator is to write it in Hadmard basis, in which, it is given
by [129]

𝛢 = [
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

] (4.25)

Implementing the operator 𝛢 as a quantum circuit becomes straightforward by in-
corporating ancilla qubits. These ancilla qubits serve to verify whether the input
comprises entirely of 0’s, allowing for the inversion of the phase if it does not.

4.4.2 Shift-Operator

The flip-flop shift operator is a conditional incrementor over position space qubits.
To explicitly implement this, we start with mapping computational basis associated
with position 𝑥 = 0, 1, 2, … , √𝛮 − 1 into qubit basis by representing state |𝑥⟩ into
its binary representation (similar for 𝑦 direction). As discussed in [126], we can
construct an incrementor circuit as shown in FIG. 4.12 using a series of multi-qubit
CNOT gates. A 𝑛-qubit CNOT gate can be decompose into ≈ 16𝑛 Toffoli gates,
achieving 𝒪(𝑛) bound [130]. An analogous circuit of decrementor can also be con-
structedusing amulti-qubitCNOTgate bychanging the control qubits as shown in
FIG. 4.12. We can, therefore, construct a flip-flop shift operator using a conditional
operator over coin qubits as shown in FIG. 4.13.
In case of multiple layers, the translation operator couples with qubit representing
layers depending on static or dynamic labelling. As we seen in §4.2, the algorithm
decouples for static labelling, therefore the shift operator remains the same. In case
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Figure 4.11: Implementation of Grover’s
diffusion operator for 2-qubits done using
Qiskit
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Figure 4.12: Translation operator for
qubits in position space. Left: 𝑛-qubit in-
crementor circuit. Right: 𝑛-qubit decre-
mentor circuit.

of dynamic labelling, we add an extra coin-qubit to allow inter-layer flow, as shown
in FIG. 4.13.

4.4.3 Oracle

Finally, consider the oracle 𝑅 which we claim to be a controlled Grover diffusion
operator (up to a phase), where control qubits are marked states. To prove this,
consider the form of oracle in EQ. (4.8). This operator acts trivially (as identity)
on the states which does not belong to set of marked nodes 𝛭, while it acts as
𝛪 ⊗ (𝛪 − 2|𝜓(𝑑)

𝑐 ⟩⟨𝜓(𝑑)
𝑐 |) if the state belongs to𝛭. The operator 𝛪 − 2|𝜓(𝑑)

𝑐 ⟩⟨𝜓(𝑑)
𝑐 | =

−𝐺(𝑑) is Grover diffusion operator up to a phase of 𝑒𝑖𝜋. This is results follows for
the case ofmultilayer searchoracle except the control operation is over state |𝑥, 𝑦, 𝜂𝑧⟩
where (𝑥, 𝑦) ∈ 𝛭𝑧.

To illustrate this result, consider aquantum-walk searchon2×2 latticewith amarked
point chosen to be (0, 0)without the loss of generality. We map the position states
in qubit states as shown in FIG. 4.14. The oracle can be written as

𝑅 = 𝛪 − 2|𝜓(2)
𝑐 ⟩⟨𝜓(2)

𝑐 | ⊗ |00⟩⟨00| (4.26)

Thefirst termdoesn’t affect the state and the second termonly contributes when the
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Figure 4.13: Quantum circuit for flip-
flop shift operator where 𝛵+ and 𝛵− rep-
resent translation operators (incrementor
and decrementor respectively). The qubits
𝑞1, 𝑞2, … , 𝑞𝐷/2 and 𝑞𝐷/2+1, 𝑞𝐷/2+2, … 𝑞𝐷 rep-
resents position space qubits associated 𝑥
and 𝑦-direction respectively, 𝑐1, 𝑐2 are coin-
space qubits, and𝑄1, 𝑄2, … , 𝑄𝐷′ represent
layer states. The dotted part represents the
circuit needed for static labelling.

position state is a marked state |00⟩. More explicitly,

|0000⟩ → 1
2(|00⟩ − |01⟩ − |10⟩ − |11⟩)|00⟩

|0100⟩ → 1
2(−|00⟩ + |01⟩ − |10⟩ − |11⟩)|00⟩

|1000⟩ → 1
2(−|00⟩ − |01⟩ + |10⟩ − |11⟩)|00⟩

|1100⟩ → 1
2(| − 00⟩ − |01⟩ − |10⟩ + |11⟩)|00⟩ .

(4.27)

Therefore, it’s a control operation over marked state |00⟩with controlled operation
−𝐺(2). FIG. 4.14 shows the quantum circuit implementation of this Oracle. Con-
sider the case of ordered marked points with two categories, therefore, we require
one additional qubit for two layers. Further, we assume that the two categories con-
tain marked points |00⟩ and |11⟩ (See FIG. 4.15). The oracle operator 𝑅 can be writ-
ten as

𝑅 = 𝛪 − 2|𝜓(2)
𝑐 ⟩⟨𝜓(2)

𝑐 | ⊗ [|00⟩⟨00| ⊗ |0⟩⟨0| + |11⟩⟨11| ⊗ |1⟩⟨1|] (4.28)
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Figure 4.14: Left: The qubit space
for 2 × 2 lattice along with coin basis.
Right: Quantum circuit implementa-
tion of Oracle for 2 × 2 lattice. The
Pauli𝛸 operator is used to flip the bit
to implement control operation over
|00⟩ position basis.

where we assumed static labelling (but easily generalized to dynamic case). Follow-
ing the similar argument as before, the oracle operator only acts non-trivially to
marked labelled states which belong to set𝛭𝑧, in this case, |000⟩ and |111⟩. More
explicitly,

|00⟩|𝑥, 𝑦, 𝜂𝑧⟩ →
1
2(|00⟩ − |01⟩ − |10⟩ − |11⟩)|𝑥, 𝑦, 𝜂𝑧⟩

|01⟩|𝑥, 𝑦, 𝜂𝑧⟩ →
1
2(−|00⟩ + |01⟩ − |10⟩ − |11⟩)|𝑥, 𝑦, 𝜂𝑧⟩

|10⟩|𝑥, 𝑦, 𝜂𝑧⟩ →
1
2(−|00⟩ − |01⟩ + |10⟩ − |11⟩)|𝑥, 𝑦, 𝜂𝑧⟩

|11⟩|𝑥, 𝑦, 𝜂𝑧⟩ →
1
2(| − 00⟩ − |01⟩ − |10⟩ + |11⟩)|𝑥, 𝑦, 𝜂𝑧⟩

(4.29)

where |𝑥, 𝑦, 𝜂𝑧⟩ = |000⟩, |111⟩. As before, this is controlled Grover diffusion opera-
tor over marked position states acting on coin state.

4.4.4 The complexity scaling

In this section, we analyze the complexity scaling (resource required) of the quan-
tum algorithm both with system size. We will focus on quantum-walk search with
ordered marked points from which the complexity of the quantum tracking prob-
lem can easily be derived.

As we previously seen the Hilbert space dimensions of single and multi-layer
amplification algorithms are 4𝑚𝛮 and 8𝑚𝛮 respectively, where𝛮 is the number
of lattice points and 𝑚 is the number of categories or layers. Therefore, the qubit
requirement scale is 𝒪(log(𝑚𝛮)) with system size. The major cost of the operator
in the algorithm comes from the flip-flop shift operator. We can find how many
Toffoli gates required for the flip-flop shift operator for single-layer amplification

4 ×
𝐷/2
∑
𝑛=1

16𝑛2 ≈ 4(𝐷2 + 𝐷)

which is 𝒪(4𝐷2). For the multi-layer amplification case, this modifies to ≈ 4(𝐷2 +
𝐷) + 8𝐷′(𝐷′ + 1) due to the additional operator needed for hopping between lay-
ers. The 𝑛-qubit Toffoli gate requires at least 2𝑛 CNOT gates [131], therefore, the
number of CNOT gates required is approximately of order 𝒪(8𝐷2). The construc-
tion of the oracle requires control operation of Grover’s diffusion operator as many
times as the number of marked points. For a large data set and a small number of
marked points, we expect the cost due to shift operator to dominate, and therefore
resource requirement is polynomial in the number of gates required for a single step.
Therefore, the complete algorithm requires at least ≈ 𝑡op𝒪(𝐷2)CNOT gates.
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Figure 4.15: (a) The qubit space for
2 × 2 lattice with two layers with coin
basis. The marked nodes are shown
with blue color. (b) Quantum circuit
of oracle for 2 × 2 lattice with two lay-
ers for marked nodes |000⟩ and |111⟩.

4.5 Outlook

The conventional QWSA is aimed at finding a marked node in a graph but lacks the
ability tocharacterize the nodes whenmore than one is present. We propose a mod-
ification that locates multiple marked nodes and characterizes them with respect to
an existing (chronological) ordering. Clearly, our algorithm can also be extended
to cases where the categorization of marked nodes is based on some attribute other
than temporal. This involves the introduction of extra qubits associated with cat-
egories. We give an explicit form of oracle in two separate cases depending upon
whether there’s an inter-flow of probability between categories. As a concrete appli-
cation, we used our formulation for particle tracking in real-time. Finally, we also
construct an equivalent quantum circuit for the algorithm, with the prospect of in-
tegration with the contemporary quantum hardware. However, this is a beginning
step, where we have just scratched the tip of the iceberg, and a lot more needs to be
amended in the algorithm before it gets market-ready. We will point out some im-
mediate follow-up questions that we intend to resolve and extend the scope of the
algorithm:

• More generic geometries: We have considered the algorithm on a simple
two-dimensional latticew/o boundary conditions. The immediate generaliza-
tion would be to consider more generic and perhaps non-trivial geometries
with intricacies. For example, we would consider a percolation lattice in 2𝑑
with different weighted edges and on-site potentials. These geometries rep-
resent various scenarios in real-time systems. Another direction worth pur-
suing is the search on graphs themselves. A part of the problem is already
addressed in §4.3 where we considered the simpler version of [132] where the
authors discuss searches on temporal (time-varying) graphs. Wewould like to
see if our algorithmcanbe extended to addressmultiple temporal graphswith
intersecting vertices. This would be helpful in elevating the predictability of
the algorithm from a tracking to a tracking-intercepting algorithm.

• Localization and Quantum State transfer: These two concepts are seem-
ingly disconnected. Localization explains how particle propagation (plane
waves) can be restricted (localized distribution) in the presence of disorder in
the media [133]. In particular, it is demonstrated in the context of DTQW
in various settings [134–136]. Quantum State transfer concerns the propaga-
tion of a specific quantum state from one node (origin) to another (target)
through a complex network (e.g., a spin chain) [137, 138]. These two ideas
are not quite connected with each other and are more disconnected from
the QWSA.The question, however, is whether we can establish a connection
between the search algorithm and the localization aspect by thinking of the
search oracle as a disorder in an otherwise non-chaotic media. Similarly, in-
stead of taking a complete superposition for an initial state, can we single out
the marked nodes with any biased (a specific) initial state? The real question
in both scenarios is to interpret the “Search Oracle” 𝑅 as a disorder operator
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4.5. Outlook

from the physics point of view, which in turn can help understand the search
oracle better and amend it for other purposes based on insights from physics.
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This length is usually defined in terms of
layers of gates acting in parallel.

Nielson’s complexity meets circuit depth 5

Althoughquantumcomputers are capable of solving interesting computational prob-
lems, but it remains a challenge to find efficient quantum circuits that can perform
these computational tasks. It is, therefore, of great interest to ask, What is a opti-
mal quantum circuit for the implementation of a unitary operation? The answered
to this question led to the concept of Nielson’s complexity, which will be central
topic of thischapter. In their paper [139, 140], Nielsen et al. recasted the problem of
finding optimal quantum circuits to finding the shortest path between two points
in certain curved geometry, thereby, opened the possibility of using the mathemat-
ical techniques of Riemannian geometry to suggest new quantum algorithms or to
prove limitations on the power of quantum computers.

Nielsen’s Complexity (NC) is conjectured to quantify the optimal number of
quantumgates needed to construct the optimal number of quantumgates needed to
constructa target statestarting froma referencestate. Therefore, in an optimal quan-
tum circuit, one would expect a some relation between the NC and circuit depth –
an integer number that counts themaximum length in the circuit between the input
and the output. However, much we wanted otherwise, the exact connection of the
NC and circuit depth in quantum circuits is far from being fully understood. The
reason is the ambiguity of precisely mapping the complexity measure to the quan-
tum circuit picture. A better understanding of a possible link between circuit depth
and NC proposal could provide an analytical handle on the practical circuits build
using quantum gates and ask whether the circuit in question is optimal. From the
reverse point of view, it is only logical to bring the analytically well-defined notion
of circuit complexity proposal closer to actual quantum circuits. Otherwise, relat-
ing themathematically computedNC to something physicallymeaningful becomes
hard.

In this chapter, we will try to fill in this gap between the NC and circuit depth.
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5. Nielson’s complexity meets circuit depth

TheHilbert space of 𝑛 qubits has a natural
tensor factorization

ℋ = ℂ2 ⊗ ⋯ ⊗𝒞2⏟
𝑛

.

The geometry of the set of (unit-
determinant) unitary operators 𝒰(ℋ)
that acts on this Hilbert space. In this case,
this set is

𝒰(ℋ) = 𝒰 (ℂ2𝑛) = SU(2𝑛) .

This corresponds to a choice of gate set in
the quantum computation picture, where
we allow up to 𝑘-local gates in out circuit
but do not allow more nonlocal gates.

To this end, I’ll compute theNC for the unitary evolution of the discrete-time quan-
tumwalk as well as the circuit depth by explicit quantum circuit construction. Our
results shows that the both quantities follow the identical behavior in terms of num-
ber of walk steps.

5.1 Geometry of SU(2𝑛)
In this section, we consider the explicit formulation of circuit complexity in space
SU(2𝑛) of 𝑛-qubit unitary operators. We begin with a basis for the Lie algebra with
some notion of locality which is essential to identify some generators in the Lie alge-
bra as local or “simple”, and the rest as “complex”. In the geodesic framework, it is
natural tochoose a 𝑘-local subspace of the Lie algebra of the unitary groupmanifold
to correspond to “simple directions”. We may think of the elementary gates of the
quantum computation viewpoint as being exponentials of these simple generators.
For the qubit case SU(2𝑛), there are a couple of natural ways to proceed. We could
pick the “Pauli basis”, namely products of Paulimatrices acting on individual qubits,
as our basis of generators. The second choice is to consider the gamma matrices 𝛾𝑎
with 𝑎 ∈ {0, ⋯ , 2𝑛 − 1}which satisfy the Clifford algebra (with 𝛾†𝑎 = 𝛾𝑎):

{𝛾𝑎, 𝛾𝑏} = 2𝛿𝑎𝑏 . (5.1)

Now consider distinct ordered products 𝛵𝑎1…𝑎𝑚 = 𝛾𝑎1 …𝛾𝑎𝑚 with𝑚 ∈ {1, … , 2𝑛} and
𝑎𝑝 < 𝑎𝑞 for 𝑝 < 𝑞. We will often denote these operators as simply 𝛵𝑖, where 𝑖
stands for the multi-index 𝑎1 ⋯𝑎𝑚. The total number of such ordered products is
∑2𝑛

𝑚=1
2𝑛𝐶𝑚 = 22𝑛 − 1. This is precisely the dimension of the Lie algebra 𝔰𝔲(2𝑛). It

is simply tomake such ordered products of gammamatrices Hermitian by inserting
appropriate factors of 𝑖. Such a construction is a basis for 𝔰𝔲(2𝑛). Furthermore,
𝑘-local generators of the Lie algebra are simply those involving 𝑘 or fewer gamma
matrices.

Our next step is to come up with a right-invariant metric which penalize the
motion in the direction of nonlocal unitary operators. In our case, we want to deter
motion in directions which correspond to generators involving products of more
than 𝑘 gammamatrices. We begin with computing the structure constant 𝑓𝑙𝑖𝑗 of the
Lie algebra defined as

[𝛵𝑖, 𝛵𝑗] = 𝑖𝑓𝑙𝑖𝑗𝛵𝑙 (5.2)

Using these, we calculate the Cartan-Killing form

𝛫𝑖𝑗 = − 1ℎ𝑓
𝑙
𝑖𝑚𝑓𝑚𝑗𝑙 (5.3)

(where ℎ is the dual Coxeter number) which is a positive-definite bilinear form. To
build the notion of simple and hard directions in the Lie algebra, we construct a new
positive-definite bilinear form on 𝔰𝔲(2𝑛)

𝐺𝑖𝑗 =
𝑐𝑖 + 𝑐𝑗
2 𝛫𝑖𝑗 (5.4)
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5.2. Setup

where the numbers 𝑐𝑖 are “cost factors” which encode the information about our
choice of local and nonlocal directions. Then a right-invariant metric 𝑔 can be de-
fined at an arbitrary point𝑈 on SU(2𝑛) by simply taking

𝑔𝑈(𝛸, 𝑌) = 𝐺(𝛸𝑈−1, 𝑌𝑈−1) (5.5)

where we have used the group structure to transport the tangent vectors 𝛸 and 𝑌
from𝑈 back to identity then applied. We will generally take 𝑐𝑖 = 1 if the generator
𝛵𝑖 consists of 𝑘 or fewer gamma matrices, and 𝑐𝑖 = 1 + 𝜇with 𝜇 ≥ 1 otherwise.

Havingchosen our cost factors, the geodesic equation on SU(2𝑛)withmetric is
given in terms of the Lie algebrametric and structure constants by the Euler-Arnold
equation

𝐺𝑖𝑗
𝑑𝑉𝑗

𝑑𝑠 = 𝑓𝑝𝑖𝑗𝑉𝑗𝐺𝑝𝑙𝑉𝑙 (5.6)

where the velocities𝑉𝑖(𝑠) control the unitary path the geodesic follows via

𝑈(𝑠) = 𝒫 exp [−𝑖∫
𝑠

0
𝑑𝑠′𝑉𝑖(𝑠′)𝛵𝑖] (5.7)

and we have made use of the path-ordered exponential to solve the matrix equation
for the unitary operator

𝑑𝑈
𝑑𝑠 = −𝑖𝑉𝑖(𝑠)𝛵𝑖𝑈(𝑠) (5.8)

Finally, we impose the boundary condition𝑈(1) = 𝑈target for some target unitary
whose circuit complexity we wish to study. This complexity is given by the geodesic
length

𝒞[𝑈target] = min∫
1

0
𝑑𝑠√𝐺𝑖𝑗𝑉𝑖(𝑠)𝑉𝑗(𝑠) (5.9)

where theminimization is over all geodesics from the identity to𝑈target. Having this
preliminary required, we will talk about target unitary of our interest.

5.2 Setup

After a brief introduction to the circuit complexity and it’s structure in SU(2𝑛), I’ll
setup the problem of interest i.e. a unitary𝑈 of interest. Consider one-dimensional
discrete-time quantum walk (DTQW) governed by

𝑈 = 𝑆 ⋅ (𝐶(𝜃) ⊗ 𝛪) (5.10)

where 𝑆 is the shift operator given by

𝑆 = ∑
𝑥
(|↑⟩⟨↑| ⊗ |𝑥 + 1⟩⟨𝑥| + |↓⟩⟨↓| ⊗ |𝑥 − 1⟩⟨𝑥|) . (5.11)
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5. Nielson’s complexity meets circuit depth

Due to large dimension of unitary, we
can not directly find the complexity of the
quantum-walk. However, as we will see,
we will work with reduce dynamics in the
coin space.

and the coin operator𝐶(𝜃)

𝐶(𝜃) = [ cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃] . (5.12)

The unitary operator lives in ℋ2 ⊗ ℋ𝛮 which is a (4𝛮 + 2) × (4𝛮 + 2) dimen-
sional space. The initial state is chosen to be positioned at the origin with an equal
superposition of the coin states,

|Ψ(0)⟩ = |↑⟩ + 𝑖|↓⟩
√2

⊗ |0⟩ (5.13)

After 𝑡-steps of evolution,
|Ψ(𝑡)⟩ = 𝑈𝑡|Ψ(0)⟩ (5.14)

can be written as a general superposition of the |↑⟩ and |↓⟩ states,

|Ψ(𝑡)⟩ = ∑
𝑥
𝜓↑
𝑥,𝑡|↑⟩|𝑥⟩ + 𝜓↓

𝑥,𝑡|↓⟩|𝑥⟩ . (5.15)

The coefficients can be recursively solved from the relations,

𝜓↑
𝑥,𝑡 = cos 𝜃𝜓↑

𝑥−1,𝑡−1 + sin 𝜃𝜓↓
𝑥−1,𝑡−1

𝜓↓
𝑥,𝑡 = − sin 𝜃𝜓↑

𝑥+1,𝑡−1 + cos 𝜃𝜓↓
𝑥+1,𝑡−1

(5.16)

The probability distribution as a function of the time and position is given by 𝑝𝑥,𝑡 =
|𝜓↑

𝑥,𝑡|2 + |𝜓↓
𝑥,𝑡|2. In order to proceed, we consider the reduced density matrix,

𝜌(𝑡) = tr𝑥|Ψ(𝑡)⟩⟨Ψ(𝑡)| = ∑
𝑖,𝑗∈↑,↓

𝜌𝑖𝑗|𝑖⟩⟨𝑗|

𝜌↑↑ = ∑
𝑥
|𝜓↑

𝑥,𝑡|2

𝜌↑↓ = ∑
𝑥
𝜓↑
𝑥,𝑡(𝜓↓

𝑥,𝑡)∗

𝜌↓↑ = 𝜌∗↑↓ , 𝜌↓↓ = 1 − 𝜌↑↑ .

(5.17)

By construction, tr𝜌(𝑡) = 1, and the resultant is a mixed state density matrix in the
coin space (ℋ2).

5.2.1 Canonical Purification

We start by canonically purifying the reduced density matrix which begins at com-
puting the eigenvalues of the matrix 𝜌(𝑡) given by,

𝜆±(𝑡) =
1 ± √1 − 4 det 𝜌

2 . (5.18)
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Figure 5.1: Entanglement of purification
(EoP)withsteps for canonical purification.

and corresponding eigenvectors |𝜓±⟩. The resultant canonically purified state,

|Φ(𝑡)⟩ = √𝜆+(𝑡)|𝜓+, 𝜓+⟩ + √𝜆−(𝑡)|𝜓−, 𝜓−⟩ , (5.19)

is a 2-qubit state where |𝜓, 𝜓⟩ = |𝜓⟩ ⊗ |𝜓⟩. This is our starting point for the com-
plexity computation. It is motivated by the following principle. Since complexity
computation is known for purestates, the corresponding evaluation formixedstates
entails an additional intermediate step of purifying the mixed state to a pure state
at the cost of dimensional oxidation fromℋ2𝑛 → ℋ22𝑛 space. The corresponding
entanglement of purification as a function of time is,

EoP(𝑡) = −tr (𝜌pr log 𝜌pr) , (5.20)

where 𝜌pr = tr2 (|Φ(𝑡)⟩⟨Φ(𝑡)|) .The density matrix 𝜌pr is the reduced density ma-
trix from the purified state where tr2 implies the partial trace of the second qubit.
The functional dependenceof entanglementofpurificationonsteps is given inFIG. 5.1.
It follows essentially the same behavior as the entanglement for the quantum walk.

To conclude the section, we would like to comment on the continuum limit of the
walk and its implications on purification. As was established in [141, 142], the con-
tinuum limit of the one-dimensional walk is given by the Dirac-Hamiltonian for a
single free fermion,

𝛨(𝑝) = −𝑖𝑝 ( cos 𝜃 sin 𝜃
sin 𝜃 − cos 𝜃 ) + ( 0 −𝑖 sin 𝜃

𝑖 sin 𝜃 0 ) (5.21)

This Hamiltonian characterizes a pure fermionic state. To put this loosely, we can
construct a 2-particle state (also a pure state) by,

𝛨(𝑝1, 𝑝2) = 𝛨(𝑝1) ⊗ 𝕀2 + 𝕀2 ⊗𝛨(𝑝2) . (5.22)
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5. Nielson’s complexity meets circuit depth

This approach is identical to considering
the vectors u𝑖 ∈ SU(4) and then optimiz-
ing over the parameters. This optimization
is over 15 parameters which coincide with
the parameterization of 𝑈target ∈ SU(4).
We perform the optimization numerically
by sampling over 𝑛-samples of choices of
the initial random vectors v𝑖. The number
of samples for this optimization depends
on whether the standard deviation of the
complexity computed from each sample
reaches saturation. We will report on this
saturationofstandarddeviation in thenext
section after discussing the notion of com-
plexity.

It is unclear, as of yet, how these response
functions are connected to the strengths
(or, more specifically, numbers) of quan-
tum gates needed to construct an actual
quantum circuit. However, at this point,
we will refrain from addressing this issue
and will come back to this at the end of the
work.

5.2.2 Target Unitary Operator

Our starting point is the construction of a unitary operator𝑈target such that,

|Φ(𝑡)⟩ = 𝑈target|Φ𝑅⟩ , (5.23)

where |Φ(𝑡)⟩ is the target state given in EQ. (5.19) and |Φ𝑅⟩ is a reference statechosen
to be the most simple 2-qubit state |0⟩ ⊗ |0⟩. We call 𝑈target as the target unitary
operator that converts the reference state into the target state. Since |Φ(𝑡)⟩ is time-
dependent, we expect 𝑈target to be a time-dependent matrix as well. However, the
matrix is not fully constrained by EQ. (5.23). We begin by constructing,

𝑈target = [u0 u1 u2 u3] (5.24)

whereu𝑖 are columnvectors of dimension 4×1. From EQ. (5.23), we getu0 = |Φ(𝑡)⟩,
satisfying |u0|2 = 1 from normalization of |Φ(𝑡)⟩. The unitarity constraint𝑈𝑈† =
𝕀 enforces,

u𝑖 ⋅ u†𝑗 = 𝛿𝑖𝑗 , (5.25)

which is incidentally the condition for Gram-Schmidt orthonormalization. To start
with,

u𝑖 = v𝑖 −
𝑖−1
∑
𝑗=0

⟨u𝑗, v𝑖⟩
‖u𝑗‖2

u𝑗 . (5.26)

where ‖⋅‖ is the norm of the vector. Wechoose v𝑖 to be random vector,

v𝑖 = a𝑖 + 𝑖b𝑖 , (5.27)

where a𝑖 , b𝑖 ∈ rand(0,1). Such a construction of target unitary𝑈target is not unique,
therefore, in what follows, we will consider average of complexity taken over large
number target unitaries so that the complexity is well converged.

5.3 Circuit Complexity

Once the unitary target operator𝑈target is determined, we proceed to compute the
complexity of the operator𝐶[𝑈target] using the formulation presented in §5.1.

5.3.1 Two-qubit system

We begin by constructing a path ordered unitary operator for a 2-qubit circuit,

𝑈(𝑠) = 𝒫 exp [−∫
𝑠

0
𝑑𝑠′𝑉𝑖(𝑠′)𝛵𝑖] (5.28)

where 𝑉𝑖(𝑠) measures the response function for the generators 𝛵𝑖 ∈ SU(4) group
and𝒫 denotes path ordering, which denotes the non-commutativity of quantum
gates. The generators 𝛵𝑖 are built fromMajorana fermionic operators 𝛾𝑎 (satisfying
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5.3. Circuit Complexity

Recall that 𝑐𝑖 are cost functions such that
𝑐𝑖 = 1 whenever 𝛵𝑖 is built from 𝑘 or fewer
𝛾𝑎 otherwise 𝑐𝑖 = 1 + 𝜇with 𝜇 ≥ 1.

EQ. (5.1)) are given by,
𝛵𝑖 = 𝑖𝑞𝐶2𝛾𝑏11 𝛾

𝑏2
2 𝛾

𝑏3
3 𝛾

𝑏4
4 (5.29)

where 𝑏𝑖 are the bitwise representation of the integers representing the generators,

1 ≤ 𝑖 = 23𝑏4 + 22𝑏3 + 21𝑏2 + 20𝑏1 ≤ 15 , (5.30)

and 𝑞 = 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4. The fermionic generators 𝛾𝑎 [143] and explicit forms of the
generators 𝛵𝑖 are given in appendix 6. We also define the structure constant and the
Cartan killing forms (ℎ = 32 is the Coxeter number),

𝑓𝑘𝑖𝑗 = − 𝑖4 tr𝛵𝑘[𝛵𝑖, 𝛵𝑗] , 𝛫𝑖𝑗 = − 1ℎ𝑓
𝑚
𝑖𝑙 𝑓𝑙𝑗𝑚 . (5.31)

With thechoice of normalization𝛫𝑖𝑗 = 𝛿𝑖𝑗 and hence𝐺𝑖𝑗 = 𝑐𝑖𝛿𝑖𝑗. The quadratic cost
function that defines the complexity is given by,

𝐶[𝑈] = min∫
1

0
𝑑𝑠√𝐺𝑖𝑗𝑉𝑖(𝑠)𝑉𝑗(𝑠) , (5.32)

where the functions𝑉𝑖(𝑠) satisfy the Euler-Arnold geodesic equations,

𝐺𝑖𝑗
𝑑𝑉𝑗(𝑠)
𝑑𝑠 = 𝑓𝑝𝑖𝑘𝐺𝑝𝑙𝑉

𝑘(𝑠)𝑉𝑙(𝑠) . (5.33)

Theminimization is over all geodesics leading the affinepath from 𝑠 = 0 to 𝑠 = 1. The
minimization takes the geodesic solution to the Euler-Arnold equation EQ. (5.33).
Note that the explicit solutions are relevant for the construction of the unitary ma-
trix, but in so far as the complexity is concerned, only the sums of squares of the
functions are important. However, depending on the solutions, the sum of squares
of the functions form simple subsets which are constants and independent of 𝑠. In
this sense,

𝐶[𝑈] = √𝛢𝛵𝛢 + 𝛣𝛵𝛣 + ⋯ , (5.34)

where𝛢, 𝛣, … are the subsets. These solutions can be obtained by matching,

𝑈(𝑠 = 1) = 𝑈target → 𝑉𝑖(𝑠 = 1)𝛵𝑖 = 𝑖 log[𝑈target] (5.35)

In the next few sections, we will solve EQ. (5.33) explicitly for 𝑘 = 1, 2, 3 local cases
and construct the complexity explicitly.

5.3.1.1 𝑘 = 1
For this case, we have the constants of motion (𝑉𝑖(𝑠) = 𝑣𝑖) in the subsetℬ = {𝑣𝑖 ∶
5 ≤ 𝑖 ≤ 10}. The remaining equations are of the form,

𝑑𝒜1(𝑠)
𝑑𝑠 + 2𝜇ℳ1𝒜1(𝑠) = 0

𝑑𝒜2(𝑠)
𝑑𝑠 + 2𝜇

1 + 𝜇ℳ2(𝑠)𝒜2(𝑠) = 0
(5.36)

59



5. Nielson’s complexity meets circuit depth

where

𝒜1(𝑠) = [𝑉1(𝑠) 𝑉2(𝑠) 𝑉3(𝑠) 𝑉4(𝑠)]
𝛵

𝒜2(𝑠) = [𝑉11(𝑠) 𝑉12(𝑠) 𝑉13(𝑠) 𝑉15(𝑠)]
𝛵 (5.37)

and

ℳ1(𝑠) = [
0 𝑣5 𝑣6 𝑣8
−𝑣5 0 𝑣7 𝑣9
−𝑣6 −𝑣7 0 𝑣10
−𝑣8 −𝑣9 −𝑣10 0

]

ℳ2(𝑠) = [

0 0 0 0 −𝑉4(𝑠)
0 0 0 0 𝑉3(𝑠)
0 0 0 0 −𝑉2(𝑠)
0 0 0 0 𝑉1(𝑠)

𝑉4(𝑠) −𝑉3(𝑠) 𝑉2(𝑠) −𝑉1(𝑠) 0

] .

(5.38)

which satisfy the propertyℳ𝛵
1,2 = −ℳ1,2. The corresponding solutions are

𝒜1(𝑠) = exp [2𝜇ℳ1(1 − 𝑠)]𝒜1(𝑠 = 1) ,

𝒜2(𝑠) = exp [𝛼∫
1

𝑠
𝑑𝑠′ℳ2(𝑠′)]𝒜2(𝑠 = 1) .

(5.39)

where 𝛼 = 2𝜇/(1 + 𝜇). Using the properties of the matricesℳ1,2, we can write

𝒜𝛵
1,2(𝑠)𝒜1,2(𝑠) = 𝒜𝛵

1,2(𝑠 = 1)𝒜1,2(𝑠 = 1) (5.40)

as constants evaluated at 𝑠 = 1. The metric of measure is independent of the affine
parameter 𝑠 and it follows that the complexity is

𝐶[𝑈] = √𝒜𝛵
1 𝒜1 + (1 + 𝜇) (ℬ𝛵ℬ+𝒜𝛵

2𝒜2) . (5.41)

5.3.1.2 𝑘 = 2
In this case, the constants of motion form the subsetℬ = {𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ 10}. The
remaining variables form the vector

𝒜(𝑠) = [𝑉11(𝑠) 𝑉12(𝑠) 𝑉13(𝑠) 𝑉14(𝑠) 𝑉15(𝑠)]
𝛵

(5.42)

satisfying
𝑑𝒜(𝑠)
𝑑𝑠 + 2𝜇

1 + 𝜇ℳ𝒜(𝑠) = 0 (5.43)

where

ℳ = [

0 −𝑣10 𝑣9 −𝑣8 −𝑣4
𝑣10 0 −𝑣7 𝑣6 𝑣3
−𝑣9 𝑣7 0 −𝑣5 −𝑣2
𝑣8 −𝑣6 𝑣5 0 𝑣1
𝑣4 −𝑣3 𝑣2 −𝑣1 0

] (5.44)
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Figure 5.2: The two ways for com-
putation of target unitary from state
|𝜓(𝑡𝑖)⟩ to |𝜓(𝑡𝑖+2)⟩. The direct tar-
get unitary corresponds to 𝑈̃𝑖 and
step-wise target unitary corresponds to
𝑈𝑖+1𝑈𝑖.

which satisfiesℳ𝛵 = −ℳ. The solution is given by

𝒜(𝑠) = exp (𝛼ℳ(1 − 𝑠))𝒜(𝑠 = 1) (5.45)

with 𝛼 = 2𝜇/(1 + 𝜇). Again, the norm of the vector 𝒜(𝑠) is independent of the
affine parameter 𝑠, and the complexity,

𝐶[𝑈] = √ℬ𝛵ℬ+ (1 + 𝜇)𝒜𝛵𝒜 . (5.46)

5.3.1.3 𝑘 = 3
Finally, for the three local cases, the only constant ofmotion is a the subsetℬ = {𝑣15}
with only one element. The remaining variables form the vector,

𝒜(𝑠) = [𝑉1(𝑠) 𝑉2(𝑠) ⋯ 𝑉14(𝑠)] (5.47)

which satisfies
𝒜(𝑠) = exp (2𝜇ℳ(1 − 𝑠))𝒜(𝑠 = 1) . (5.48)

where

ℳ =

⎡
⎢
⎢
⎢
⎢
⎢

⎣

0 0 0 0 0 0 0 −𝑣15
0 0 0 0 0 0 𝑣15 0
0 0 0 0 0 −𝑣15 0 0
0 0 0 0 𝑣15 0 0 0
0 0 0 −𝑣15 0 0 0 0
0 0 𝑣15 0 0 0 0 0
0 −𝑣15 0 0 0 0 0 0
𝑣15 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥

⎦

(5.49)

In this case, the exponentiation can be done exactly, yielding the (8×8) dimensional
“magic matrix”. In this case, the complexity takes the simple form

𝐶[𝑈] = √𝒜𝛵𝒜 + (1 + 𝜇)𝑣215 . (5.50)

For 4-local case,𝑉𝑖(𝑠) = 𝑣𝑖 for all 𝑖 = 1 … 15.

5.3.2 Quantum-walk system

Given the circuit complexity of two-qubit system, we can proceed to find the com-
plexity of the DTQW target unitary. Before proceeding, there is another subtly to
care about. The two-qubit initial |𝜓(𝑡𝑖)⟩ can be evolved to |𝜓(𝑡𝑛)⟩ using two-ways:
1) Using the target unitary from reference state |𝜓(𝑡𝑖)⟩ and target state |𝜓(𝑡𝑛)⟩ 2) Us-
ing the set of target unitaries𝑈𝑖 from referencestate |𝜓(𝑡𝑖−1)⟩ and target state |𝜓(𝑡𝑖)⟩
so that the evolution operator becomes 𝑈 = ∏𝑖𝑈𝑖 (See Fig. 5.2). These two ways
lead to two different definition of circuit complexity, explained below.
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5. Nielson’s complexity meets circuit depth

This is more significant from point of qua-
tum circuit picture where the final state is
obtained from set of unitary gates.

From computational point of view, it is im-
portant to note that if |𝜓𝑖⟩ = 𝑈𝑖|𝜓(𝑡0)⟩
and |𝜓(𝑡𝑖+1)⟩ = 𝑈𝑖+1|𝜓(𝑡0)⟩, then, the
|𝜓(𝑡𝑖+1)⟩ = 𝑈𝑖+1𝑈†

𝑖 |𝜓(𝑡𝑖)⟩.

5.3.2.1 Direct complexity

In this case, we fix the reference state to the initial state |𝜓(𝑡0)⟩ = |0⟩ ⊗ |0⟩. Then,
we find the target unitary𝑈(𝑡𝑛) by considering the target states |𝜓(𝑡𝑛)⟩ – the state
of quantum-walk at time 𝑡𝑛. The complexity (refers to as direct complexity) is, there-
fore, corresponds to target unitary𝑈(𝑡𝑛). As apparent from the definition, this com-
plexity doesn’t affect by the path taken by thewalk to reach |𝜓(𝑡𝑛)⟩, but only the the
final state.

The corresponding plots for the 𝑘 = 1, 2, 3 local cases are shown in Fig. 5.3. We
observe that the complexities for different timesteps with respect to the reference
state behave in an uncorrelated, fluctuating way. However, it is worth noting that
the fluctuating values decrease as we increase the notion of locality in the picture. In
an explicitway, this basicallymeans assigning fewerpenalty factors tomore andmore
generators of the SU(4) group. From a gate perspective, this can be understood as
more and more quantum gates becoming easily available as we increase the locality.

5.3.2.2 Step-wise complexity

Another way is to consider the evolution in step-wise manner. More explicitly, the
target state |𝜓(𝑡𝑛)⟩ is obtained from the initial reference state |𝜓(𝑡0)⟩ as |𝜓(𝑡0)⟩ →
|𝜓(𝑡1)⟩ → ⋯ → |𝜓(𝑡𝑛)⟩ in step-wise manner such that

𝑈(𝑡𝑖)|𝜓(𝑡𝑖)⟩ = |𝜓𝑖+1⟩ .

Therefore, the corresponding total complexity is the sum of individual complexities
for each step. The step-wise complexity is shown in Fig. 5.3 which grows linearly as
the number of steps. The growth persists forever, which ismeaningful from a circuit
construction point of view. This circuit successfully simulates all the states along
the quantum walk at different steps. Here also, we find that the slope of the curves
decreases as we increase the locality. It, therefore, seems to be universally true that as
we make more and more generators (or equivalently quantum gates from a circuit
perspective), it takes fewer number of gates to construct the optimized circuit.

In FIG. 5.4, we plot the slope of the stepwise complexity plots for different local-
ity notions with varying coin angles. Whereas the slope values increase with decreas-
ing locality, which is expected from plots in FIG. 5.3 already, we notice that there is
a dip in the slope for each of the cases around coin angle value 2𝜋/3. These plots,
therefore, indicate that among different coin angles, the complexity is least for the
coin with angle 𝜃 ≈ 2𝜋/3.

As we pointed out in §5.2.2, the obtained target unitary operators are not unique,
therefore, it is important to take sample average such that the complexity is well
converged. In FIG. 5.5, we showed the standard deviation of the complexity for the
time-step 𝑡100 as a function of number of samples. Thestandard deviation converges
to unique value for large number of samples which ensures the convergence of the
complexity.
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Figure 5.3: “Direct” complexity as func-
tion of unitary operator 𝑈target(𝑡) for 𝜃 =
𝜋/4 for𝑘 = 1, 2, 3 local operators. The scat-
tered colored points are the actual values
derived, whereas the dotted colored lines
denote the stepwise averaged values.

5.3.3 Fermionic Hamiltonian in continuum limit

Before concluding the section, we would like to point out that diagonalization of
the two-particle fermionic Hamiltonian in EQ. (5.22), leads to the following con-
struction,

𝑉(𝑠) = 𝑣5𝛵5 + 𝑣10𝛵10 + 𝑣15𝛵15 = −𝑖𝛨2(𝑝1, 𝑝2)𝑡 (5.51)

which solves for 𝑣5 = 0 and

𝑣10 = − 𝑡2 (
√𝑚2 + 𝑝21 + 𝑝22 − √(𝑚2 + 2𝑝21 ) (𝑚2 + 2𝑝22) + √𝑚2 + 𝑝21 + 𝑝22 + √(𝑚2 + 2𝑝21 ) (𝑚2 + 2𝑝22))

𝑣15 =
𝑡
2 (

√𝑚2 + 𝑝21 + 𝑝22 − √(𝑚2 + 2𝑝21 ) (𝑚2 + 2𝑝22) − √𝑚2 + 𝑝21 + 𝑝22 + √(𝑚2 + 2𝑝21 ) (𝑚2 + 2𝑝22))
(5.52)

for𝑚 = sin 𝜃. Consequently,

𝐶 = ∫
Λ1
∫

Λ2
𝑑𝑝1𝑑𝑝2√𝑣210 + 𝑣215 ≃

5
24 𝑡 Λ

3 logΛ (5.53)

This complexity grows linearly with time. However, this complexity does not indi-
cate the quantum walk completely but only an approximation in the continuum
limit. Hence the complexity does not demonstrate the nuances of the walk com-
pletely.

5.4 Quantum circuit

In this section, we connect the linear growth of cumulative step-wise complexity
found in §5.3.2.2 to constant circuit depth of explicit quantum circuit associated
with target unitary. The target unitary operator can be associated with a 2-qubit
circuit, as shown in FIG. 5.6. To find the circuit depth of a quantum circuit, one
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Figure 5.5: Standard deviation of the
circuit complexity with an increasing
sample size of target unitary operators
calculated for the 10th step of DTQW.
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Figure 5.6: A general 2-qubit quan-
tum circuit for the step-wise unitary
operator.

is required to decompose the unitary into a universal set of gates. For our purpose,
we will consider a 1-qubit gate𝑈3(𝜃, 𝜙, 𝜆) and 2-qubit CNOT gate with the explicit
forms as following

𝑈3(𝜃, 𝜙, 𝜆) = [ cos 𝜃 𝑒𝑖𝜙 sin 𝜃
−𝑒−𝑖𝜙 sin 𝜃 𝑒−𝑖(𝜙+𝜆) cos 𝜃] (5.54)

and

CNOT = [
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

] . (5.55)

In FIG. 5.7, we showed the explicit circuit associated with the target unitary for
a particular walk step constructed using Qiskit [144]. The circuit associated with
the target unitary for different walk steps has a contact depth of 7 layers with pa-
rameters 𝜃, 𝜙, and 𝜆 changing values. Therefore, similar to the direct complexity
study using Nielsen’s proposal, the cost of constructing the unitary seems almost a
constant function. Therefore, if we again construct the circuit stepwise and cumu-
latively sum the depth of the individual circuits, the depth grows linearly again with
the steps (see FIG. 5.8), in agreement with the complexity computed fromNielsen’s
proposal.

It’s important to emphasize that relationbetween 𝑘-local case in context ofNielsen’s
complexity (NC) and 𝑘-qubit gate in context of quantum circuit is not very well un-
derstood. If we naively consider that both are equivalent to each other, then 𝑘 = 1
should correspond to single qubit quantum circuits for target unitary. However,
since the universal set of quantum gates atleast requires a two-qubit gate [145] as
known from the Solovay-Kitaev theorem, one can not construct a general 𝑛-qubit
quantum circuit (𝑛 > 1) with just single qubit gates (unless target unitary is separa-
ble into 𝑛 independent single qubit gates which is not true generally or in our case).
The case 𝑘 = 3 on the other hand can be realised for 𝑛 qubit quantum circuits with
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Figure 5.7: Representing a 2-qubit quan-
tum circuit for the step wise unitary opera-
tor using Qiskit.
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Figure 5.8: Quantum circuit depth
corresponding to target unitary opera-
tor corresponding to two-local case (es-
timated with explicit construction of
quantum circuit using QISKIT) with
varying timesteps of DTQW.

𝑛 ≥ 3. However, in our case, we have a two-qubit target unitary, which can not be
written in terms of three qubit quantum gates. These facts as mentioned above sug-
gest that 𝑘-local operators should not in general be understood as 𝑘-qubit gates, and
their exact relation needs further investigation. However, for the two-qubit circuit,
our result indeed shows a qualitative similarity between the two concepts. It will be
interesting to extend these studies to higher qubit circuits, where one can explicitly
check if such similarities exist for 𝑘 ≥ 3.

5.5 Discussions

We conclude the chapter with a brief account of what has been answered and what
more remains to be done. To begin with:

• We have computed the complexity for the one-dimensional quantum walk
using a SU(2) coin. The walk entangles the position and internal degrees of
freedom and produces a mixed state on partial tracing over the position de-
grees of freedom. Consequently tomeasure the complexity of themixedstate,
we first canonically purify the mixed state and then evaluate the complexity
using an approximate 2-qubit quantum circuit.

• We compute and compare the complexities of the purified state using both
the direct evolution operator and the step-wise evolution in the quantum
walk. The complexity function oscillates with the steps around a mean value
which can be associated with the depth of an average quantum circuit. The
step-wise evolution, however, connectsmorewith the actual quantumcircuit
and the quantum walk picture since the direct evolution ignores the steps in
connecting the geodesic from the initial to the final step. As such, the step-
wise evolution is a direct implementation of time-ordering and a successful
simulation of the DTQW using a quantum circuit. The complexity of the
step-wise evolution cumulatively grows with the steps and is indicative of the
growing size of an associated quantum circuit and its complexity.

• To give some context, we also implement a schematic quantum circuit us-
ing 1 and 2 qubit quantum gates to implement the step-wise unitary evolu-
tion. The circuit has constant depth and relates to the average complexity in
FIG. 5.3.
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5. Nielson’s complexity meets circuit depth

• Another upshot of doing thestepwise evolution is that althoughwehavestep-
wise geodesics instead of a full one, it canproduce for us thestepwise response
functions which are valid for individual timesteps. Let us say if we want to
write the Hamiltonian acting between steps (𝑡𝑛−1) and 𝑡𝑛, we can simply pick
the corresponding step-wise unitary𝑈𝑛(𝑡𝑛) and get an estimate of the Hamil-
tonian as

𝛨(𝑛) = −1𝑖 log[𝑈(𝑡𝑛)] (5.56)

since each timestep is of length 1. Now we can write this Hamiltonian as

𝛨(𝑛) = ∑
𝑖
𝑉𝑖(𝑛)𝛵𝑖 (5.57)

to figure out which generator was effective and how much during a particu-
lar time step. Finally, we can sum all those step-wise Hamiltonians with the
correspondingstep functions andwrite downa completeHamiltonian that is
time-independentstep-wise but gives rise to all the purifiedstates correspond-
ing to the mixed one of the actual DTQW. This is somewhat analogous to
finding out the response functions for different quantumgates in theNielsen
picture of complexity. This is a trivial task and the states being individually
randomly distributed, these functions do not show up any particular nature
of growth or decay. However, it might produce further interesting results in
the case of an explicitly chaotic quantum walk [146] or for a time-dependent
coin operator [136].

However, more questions have been uncovered by the exploration. Some of the
pressing questions, whichwe could not answer in this work due to lack of resources,
but intend to complete them in immediate future follow-up works are:

• First of all, the precise connection between the circuit picture and the contin-
uum formulation is still largely opaque. We have just implemented an exam-
ple circuit that can connect with the step-wise evolution. However, the exact
nature of how the geodesic length is connected with the actual quantum cir-
cuit still remains to be explored further.

• The distinction between the step-wise evolution and the unitary evolution is
based on the logic that one can view the step-wise evolution with some quan-
tum circuits and hence the size of the circuit grows along with its complexity
whichexhibits itself in the linear growth. However, for real quantum systems,
the complexity grows linearly with time for early time and smooths out to a
constant. One reason for the discrepancy might be the fact that the dimen-
sion of the Hilbert space of the state in quantum walk linearly grows with
time. In order to gain insights into this apparent conflict, one way to move
forward would be to connect the quantumwalk to theHamiltonian of some
physical system, to get a more realizable connection with real-time systems.
Consequently designing quantum circuits for the quantum walk will act as

66



5.5. Discussions

a bridge to gain more insights into the mapping of field theory complexity
with the actual circuit compiling complexity.

67





A prominent example is related to high-
temperature superconductivity: one of
the important questions in this context is,
which basic interaction between the elec-
trons is responsible for the superconduct-
ing behaviour? In other words, which
minimal Hamiltonian describes the phe-
nomenon of high-temperature supercon-
ductivity? To answer this question, a quan-
tum simulator couldcheck the various can-
didateHamiltonians for relevant phases. A
quantum simulator may not only become
a precious tool for tackling some specific
problems in those fields, but should also
prove a powerful instrument for develop-
ing, testing and benchmarking theoretical
methods.

Outlook 6

This thesis describes the wide range of ideas in quantum computing that are all
linked together with the quantum-walks. Therefore, this thesis among others is one
evidence of wide applicability of quantum-walks. Here, I’ll briefly summarize the
work and make comments on further possibility that remains to take care in the fu-
ture.

On Chapter 3 Very few who have seen a quantum computer or let alone have
one could tell that at present, they are good for nothing. But this should not deter us
from seeing the fact that we have made a large progress from where we begin. The
quantum computers does have shown a so called “quantum advantage” for few ar-
tificial problem, but it’s important to ask if what practical we can do from what we
currently have. Toward this direction, Quantum simulation holds a great promise
– such as simulating different phase of matter. It is, therefore, becomes important
to investigate efficient ways of quantum simulation. In this chapter, we propose a
qubit efficient scheme to simulate discrete-time quantumwalk based protocols. We
explicit seen the implementation of the scheme for the problem of neutrino oscilla-
tions.

The simulation scheme exploits the interaction between the system and the en-
vironment. This interaction is chosen to be of particular form, therefore, is bit ar-
tificial at this point. Therefore, a possible way to probe such a interaction becomes
viable goal for the future. In the context of neutrino oscillation, there are several di-
rection could be explored. Among other is to incorporate the decoherence effects in-
duced by new physics (e.g., quantum gravity, string theory) in neutrino oscillations
in the scheme. It can be done by equipping new interaction between the system
and the environment. Other direction which becomes important from computa-
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tion point of view is to consider collective neutrino oscillations – in which neutrino
interact with one another.

On Chapter 4 A quantum computer can outperform the classical computer by
running quantum algorithms. Despite the fact that the full-functional quantum
computer are not yet developed, quantum algorithms became a popular avenue to
explore the possibilities of what we can achieve with quantum computers. Search
algorithm is for finding a data point from a unstructured data-base. One of the
early work is that of Grover on data-base search in which a significant speed-up can
be achieved compared to proposed classical algorithms. Since, then, several exten-
sion to this algorithm has been proposed to search for multiple data-points or set of
points. These algorithms fall sort in several ways : 1) They do not provide a homo-
geneous amplification to marked points. 2) They neglect any inherent ordering (or
category) in marked points.

In our work, we proposed a extension to of Grover’s search algorithm for mul-
tiple marked data-points that overcome these problems. The underlying idea of the
algorithm is to introduce extra dimension to data structure which is same as adding
extra qubits. These qubits are then used to encode any additional information. The
scheme can also be used to search of dynamical marked points (that can change po-
sition on their position on data-base). Thework is complement by giving an explicit
construction of quantum circuit for the algorithm and its complexity analysis. A
possible extension of this work is to implement the idea for generic graph structures
(as our analysis talks only about the two-dimensional lattices).

On Chapter 5 Finding a efficient quantum circuits that can perform unitary op-
eration remain achallenging task. In this regard, the concept of circuit complexity is
mathematically accessibleway to talk about the complexity of the operation–which
opens up the door to suggest newquantum algorithmor to prove limitations on the
power of quantum computers. Although, the circuit complexity meant to describe
the number of gates require to implement a unitary operation, it is still not very well
understood the exact relation between these two quantities.

In this work, we tried to shed light on the relationship between the circuit com-
plexity and circuit depth. To do this, we performed the two computations for a
two-qubit system obtained from purification of reduced coin-space. Our results
shows that the two quantities obey the same linear scaling. However, it is still un-
known how does these two quantities can be put on the same groundwhichwe aim
to resolve in future.
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To unclutter the notation, we will assume
that the position labels 𝑥, 𝑦 runs from
1, 2, …𝛮. Furthermore, we define set of
points 𝜙1 = {1, 2, …𝛮 − 1} and 𝜙2 =
{2, 3, … ,𝛮}.

Flip-Flop Shift Operator

In this appendix, we demonstrate the unitarity of flip-flop shift operator.

Open-boundary condition The flip-flop shift operator for open boundary con-
dition is given by sum of interior term

𝑆int = |↓⟩⟨↑| ⊗∑
𝑥
∑
𝑦∈𝜙1

|𝑥, 𝑦 + 1⟩⟨𝑥, 𝑦| + |↑⟩⟨↓| ⊗∑
𝑥
∑
𝑦∈𝜙2

|𝑥, 𝑦 − 1⟩⟨𝑥, 𝑦| + |←⟩⟨→| ⊗∑
𝑥∈𝜙1

∑
𝑦
|𝑥 + 1, 𝑦⟩⟨𝑥, 𝑦|

+ |→⟩⟨←| ⊗∑
𝑥∈𝜙2

∑
𝑦
|𝑥 − 1, 𝑦⟩⟨𝑥, 𝑦|

= |↓⟩⟨↑| ⊗ 𝛪 ⊗∑
𝑦∈𝜙1

|𝑦 + 1⟩⟨𝑦| + |↑⟩⟨↓| ⊗ 𝛪 ⊗∑
𝑦∈𝜙2

|𝑦 − 1⟩⟨𝑦| + |←⟩⟨→| ⊗∑
𝑥∈𝜙1

|𝑥 + 1⟩⟨𝑥| ⊗ 𝛪

+ |→⟩⟨←| ⊗∑
𝑥∈𝜙2

|𝑥 − 1⟩⟨𝑥| ⊗ 𝛪

(1)

and boundary (exterior) term

𝑆ext = |↑⟩⟨↑| ⊗ 𝛪 ⊗ |𝛮⟩⟨𝛮| + |↓⟩⟨↓| ⊗ 𝛪 ⊗ |1⟩⟨1|
+ |→⟩⟨→| ⊗ |𝛮⟩⟨𝛮| ⊗ 𝛪 + |←⟩⟨←| ⊗ |1⟩⟨1| ⊗ 𝛪 (2)

as 𝑆o = 𝑆int + 𝑆ext. The form of 𝑆int and 𝑆ext is chosen so that the shift operator 𝑆o
is unitary i.e. 𝑆o(𝑆o)† = (𝑆o)†𝑆o = 𝛪. To verify this, consider

𝑆o(𝑆o)† = (𝑆int + 𝑆ext)(𝑆†int + 𝑆†ext)
= 𝑆int𝑆†int + 𝑆int𝑆†ext + 𝑆ext𝑆†int + 𝑆ext𝑆†ext
= 𝑆int𝑆†int + 𝑆ext𝑆†ext
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Flip-Flop Shift Operator

where we used 𝑆int𝑆†ext = 0 = 𝑆ext𝑆†int — follows from the orthonormality of the
position basis. The two terms can easily be found using the explicit form of 𝑆int and
𝑆ext.

𝑆int𝑆†int = |↓⟩⟨↓| ⊗ 𝛪 ⊗∑
𝑦∈𝜙1

|𝑦⟩⟨𝑦| + |↑⟩⟨↑| ⊗ 𝛪 ⊗
𝛮−1
∑
𝑦=1

|𝑦⟩⟨𝑦|

+ |←⟩⟨←| ⊗∑
𝑥∈𝜙1

|𝑥⟩⟨𝑥| ⊗ 𝛪 + |→⟩⟨→| ⊗
𝛮−1
∑
𝑥=1

|𝑥⟩⟨𝑥| ⊗ 𝛪

𝑆ext𝑆†ext = |↑⟩⟨↑| ⊗ 𝛪 ⊗ |𝛮⟩⟨𝛮| + |↓⟩⟨↓| ⊗ 𝛪 ⊗ |1⟩⟨1|
+ |→⟩⟨→| ⊗ |𝛮⟩⟨𝛮| ⊗ 𝛪 + |←⟩⟨←| ⊗ |1⟩⟨1| ⊗ 𝛪

Adding the two terms together, we get𝑆int𝑆†int+𝑆ext𝑆†ext = 𝑆o(𝑆o)† = 𝛪. As required.
Note that this unitarity breaks if we consider the exterior term to be

𝑆ext = |↓⟩⟨↑| ⊗ 𝛪 ⊗ |𝛮⟩⟨𝛮| + |↑⟩⟨↓| ⊗ 𝛪 ⊗ |1⟩⟨1|
+ |←⟩⟨→| ⊗ |𝛮⟩⟨𝛮| ⊗ 𝛪 + |→⟩⟨←| ⊗ |1⟩⟨1| ⊗ 𝛪

which gives

𝑆ext𝑆†ext = |↓⟩⟨↓| ⊗ 𝛪 ⊗ |𝛮⟩⟨𝛮| + |↑⟩⟨↑| ⊗ 𝛪 ⊗ |1⟩⟨1|
+ |←⟩⟨←| ⊗ |𝛮⟩⟨𝛮| ⊗ 𝛪 + |→⟩⟨→| ⊗ |1⟩⟨1| ⊗ 𝛪 .

From which, it is easier to note that 𝑆int𝑆†int + 𝑆ext𝑆†ext = 𝑆o(𝑆o)† ≠ 𝛪.
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Details of generators

We provide the explicit form of the fermionic generators 𝛾𝑎 here. There are

𝛾1 = 𝜎1 ⊗ 𝛪2 = [
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]

𝛾2 = 𝜎2 ⊗ 𝛪2 = [
0 0 −𝑖 0
0 0 0 −𝑖
𝑖 0 0 0
0 𝑖 0 0

]

𝛾3 = 𝜎3 ⊗ 𝜎1 = [
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

]

𝛾4 = 𝜎3 ⊗ 𝜎2 = [
0 −𝑖 0 0
𝑖 0 0 0
0 0 0 𝑖
0 0 −𝑖 0

] .

(3)

The 𝛾𝑎 satisfy,
{𝛾𝑎, 𝛾𝑏} = 2𝜂𝑎𝑏 . (4)

The explicit forms of the generators 𝛵𝑖 for the 𝑆𝑈(4) group are then given by,

𝛵𝑖 = {𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝑖𝛾1𝛾2, 𝑖𝛾1𝛾3, 𝑖𝛾1𝛾4, 𝑖𝛾2𝛾3, 𝑖𝛾2𝛾4, 𝑖𝛾3𝛾4,
−𝑖𝛾1𝛾2𝛾3, −𝑖𝛾1𝛾2𝛾4, −𝑖𝛾1𝛾3𝛾4, −𝑖𝛾2𝛾3𝛾4, −𝛾1𝛾2𝛾3𝛾4}

(5)
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